
Metadata API

Page 1

Common Language Runtime

Metadata Unmanaged API

This document specifies the API for emitting and importing metadata for the
Common Language Runtime (CLR). This API is unmanaged and intended for use by
compilers and loaders – low-level tools that require fast access to metadata with a
minimum of assistance for traversing relationships (such as the class hierarchy) or
for manipulating collections (such as members on a class)

Browsers and other tools, seeking a higher-level API, may instead use the managed
Reflection interfaces

This is preliminary documentation and subject to change

Last revised: 2 August 2001

Metadata API

Page 2

1 Overview of the Metadata API..11

1.1 Metadata APIs ..11
1.2 Metadata Abstractions ...12
1.3 Using the APIs and Metadata Tokens ...15

1.3.1 The Complile/Link Style of Interaction...15
1.3.2 The RAD Tool Style of Interaction...17
1.3.3 IMapToken ..17
1.3.4 IMetaDataError ..17

1.4 Related Specifications ..18
1.5 Coding Conventions...18

1.5.1 Handling String Parameters...18
1.5.2 Optional Return Parameters...19
1.5.3 Storing Default Values ..19
1.5.4 Null Pointers for Return Parameters..19
1.5.5 “Ignore This Argument” ..20
1.5.6 Error Returns...20

2 IMetadataDispenserEx ..21
2.1 DefineScope ...21
2.2 OpenScope...21
2.3 OpenScopeOnMemory..22
2.4 SetOption...22
2.5 GetOption ..24

3 IMetaDataEmit...25
3.1 Defining, Saving, and Merging Metadata ..25

3.1.1 SetModuleProps ...25
3.1.2 Save...25
3.1.3 SaveToStream ...25
3.1.4 SaveToMemory ..25
3.1.5 GetSaveSize ..26
3.1.6 Merge ...26
3.1.7 MergeEnd..27
3.1.8 SetHandler ..28

3.2 Custom Attributes ...28
3.2.1 Using Custom Attributes..28
3.2.2 DefineCustomAttribute..29

Metadata API

Page 3

3.2.3 SetCustomAttributeValue ..30
3.3 Building Type Definitions..30

3.3.1 DefineTypeDef ...30
3.3.2 SetTypeDefProps..31

3.4 Declaring and Defining Members ...32
3.4.1 DefineMethod ..32
3.4.2 SetMethodProps ...33
3.4.3 DefineField ..34
3.4.4 SetFieldProps...35
3.4.5 DefineNestedType ..35
3.4.6 DefineParam..36
3.4.7 SetParamProps ..37
3.4.8 DefineMethodImpl ..37
3.4.9 SetRVA ...38
3.4.10 SetFieldRVA...38
3.4.11 DefinePinvokeMap ..39
3.4.12 SetPinvokeMap ..39
3.4.13 SetFieldMarshal..39

3.5 Building Type and Member References...40
3.5.1 DefineTypeRefByName..40
3.5.2 DefineImportType ..41
3.5.3 DefineMemberRef...41
3.5.4 DefineImportMember..42
3.5.5 DefineModuleRef ..43
3.5.6 SetParent..44

3.6 Declaring Events and Properties..44
3.6.1 DefineProperty...44
3.6.2 SetPropertyProps ...45
3.6.3 DefineEvent...46
3.6.4 SetEventProps ...47

3.7 Specifying Layout Information for a Class...48
3.7.1 SetClassLayout ..48

3.8 Miscellaneous ...49
3.8.1 GetTokenFromSig...49
3.8.2 GetTokenFromTypeSpec..49
3.8.3 DefineUserString..49

Metadata API

Page 4

3.8.4 DeleteToken ..50
3.8.5 DefineSecurityAttributeSet ..50

3.9 Order of Emission..51
4 MetaDataImport...54

4.1 Enumerating Collections...54
4.1.1 CloseEnum Method...55
4.1.2 CountEnum Method ..55
4.1.3 ResetEnum..55
4.1.4 IsValidToken..55
4.1.5 EnumTypeDefs...56
4.1.6 EnumInterfaceImpls ...56
4.1.7 EnumMembers...56
4.1.8 EnumMembersWithName ..57
4.1.9 EnumMethods..57
4.1.10 EnumMethodsWithName ...58
4.1.11 EnumUnresolvedMethods ..58
4.1.12 EnumMethodSemantics...59
4.1.13 EnumFields..59
4.1.14 EnumFieldsWithName ...59
4.1.15 EnumParams ...60
4.1.16 EnumMethodImpls ...60
4.1.17 EnumProperties ...61
4.1.18 EnumEvents ..61
4.1.19 EnumTypeRefs...61
4.1.20 EnumMemberRefs ..62
4.1.21 EnumModuleRefs..62
4.1.22 EnumCustomAttributes ...63
4.1.23 EnumSignatures...63
4.1.24 EnumTypeSpecs...63
4.1.25 EnumUserStrings ...64

4.2 Finding a Specific Item in Metadata ...64
4.2.1 FindTypeDefByName...64
4.2.2 FindMember ..65
4.2.3 FindMethod ...65
4.2.4 FindField ...66
4.2.5 FindMemberRef..66

Metadata API

Page 5

4.2.6 FindTypeRef ..67
4.3 Obtaining Properties of a Specified Object ..67

4.3.1 GetScopeProps ..67
4.3.2 GetModuleFromScope ...68
4.3.3 GetTypeDefProps ...68
4.3.4 GetNestedClassProps ..68
4.3.5 GetInterfaceImplProps ..69
4.3.6 GetCustomAttributeProps ..69
4.3.7 GetCustomAttributeByName ..70
4.3.8 GetMemberProps..70
4.3.9 GetMethodProps...71
4.3.10 GetFieldProps ..71
4.3.11 GetParamProps ..72
4.3.12 GetParamForMethodIndex ...72
4.3.13 GetPinvokeMap ..73
4.3.14 GetFieldMarshal ...73
4.3.15 GetRVA ...74
4.3.16 GetTypeRefProps..74
4.3.17 GetMemberRefProps ...74
4.3.18 GetModuleRefProps ..75
4.3.19 GetPropertyProps ...75
4.3.20 GetEventProps ...76
4.3.21 GetMethodSemantics ..77
4.3.22 GetClassLayout ..77
4.3.23 GetSigFromToken...78
4.3.24 GetTypeSpecFromToken..78
4.3.25 GetUserString..78
4.3.26 GetNameFromToken ...79
4.3.27 ResolveTypeRef ...79

5 IMetaDataTables ..80
6 MethodImpls ...81

6.1 Intro..81
6.2 Details ...81
6.3 ReNaming Recommendations..82
6.4 Notes...82

7 NestedTypes..84

Metadata API

Page 6

7.1 Introduction ...84
7.2 Definition ...84
7.3 Supported Features ...84
7.4 Visibility, Subclassing, and Member Access...86
7.5 Naming..87
7.6 Naked Instances ...88
7.7 C++ “Member Classes”..88
7.8 C++ “Friends” ..89
7.9 Example - Simple..89
7.10 Example – Less Simple ..91

8 Distinguished Custom Attributes ..93
8.1 Pseudo Custom Attributes (PCAs)..93
8.2 CAs that affect Runtime ...94

9 Bitmasks...95
9.1 Token Types [CorTokenType] ...96
9.2 Scope Open Flags [CorOpenFlags]...96
9.3 Options for Size Calculation [CorSaveSize] ...96
9.4 Flags for Types [CorTypeAttr] ...97
9.5 Flags for Fields [CorFieldAttr] ...99
9.6 Flags for Methods [CorMethodAttr] ..99
9.7 Flags for Method Parameters [CorParamAttr].................................... 100
9.8 Flags for Properties [CorPropertyAttr] .. 100
9.9 Flags for Events [CorEventAttr]... 101
9.10 Flags for MethodSemantics [CorMethodSemanticsAttr]....................... 101
9.11 Flags for Method Implementations [CorMethodImpl].......................... 101
9.12 Flags for Security [CorDeclSecurity] .. 102
9.13 Struct for Field Offsets [COR_FIELD_OFFSET]................................... 102
9.14 Typedef for Signatures [PCOR_SIGNATURE] 102
9.15 Flags for PInvoke Interop [CorPinvokeMap] 103
9.16 SetOptions: Duplicate Checking [CorCheckDuplicatesFor]................... 103
9.17 SetOptions: Ref-to-Def Optimizations [CorRefToDefCheck]................. 104
9.18 SetOptions: Token Remap Notification [CorNotificationForTokenMovement]
 104
9.19 SetOptions: Edit & Continue [CorSetENC]... 105
9.20 SetOptions: Out-of-Order Errors [CorErrorIfEmitOutOfOrder] 105
9.21 SetOptions: Hide Deleted Tokens [CorImportOptions]........................ 106

Metadata API

Page 7

9.22 Flags for Assemblies [CorAssemblyFlags] ... 106
9.23 Flags for Manifest Resources [CorManifestResourceFlags]................... 107
9.24 Flags for Files [CorFileFlags] ... 107
9.25 Element Types in the runtime [CorElementType]............................... 107
9.26 Calling Conventions [CorCallingConvention]...................................... 108
9.27 Unmanaged Calling Conventions [CorUnmanagedCallingConvention] ... 108
9.28 Argument Types [CorArgType].. 109
9.29 Native Types [CorNativeType]... 109

10 Signatures... 110
10.1 MethodDefSig ... 111
10.2 MethodRefSig ... 112
10.3 StandAloneMethodSig .. 113
10.4 FieldSig.. 115
10.5 PropertySig .. 115
10.6 LocalVarSig .. 116
10.7 CustomMod .. 116
10.8 TypeDefEncoded and TypeRefEncoded ... 117
10.9 Constraint .. 118
10.10 Param.. 118
10.11 RetType ... 119
10.12 Type.. 120

10.12.1 Intrinsic.. 120
10.12.2 ARRAY Type ArrayShape... 120
10.12.3 SZARRAY CustomMod* Type .. 120

10.13 ArrayShape .. 120
10.14 Short Form Signatures... 121

11 Attributes.. 123
11.1 Using Attributes .. 123
11.2 Persisted Format of an AttributeObject... 124
11.3 Prolog.. 125
11.4 Constructor Arguments .. 125
11.5 Constructor Arguments – Example 1.. 127
11.6 Constructor Arguments – Example 2.. 127
11.7 Constructor Arguments – Example 3.. 128
11.8 Constructor Arguments – Example 4.. 128
11.9 Named Fields and Properties... 129

Metadata API

Page 8

11.10 Named Field – Example.. 129
11.11 General Case (not supported in V1)... 130
11.12 Arguments of type “Type” .. 130
11.13 SERIALIZATION_TYPE_ enum... 131

12 CustomAttributes – Syntax.. 133
13 Marshalling Descriptor .. 136
14 Metadata Specific to PInvoke... 138

14.1 Overview of PInvoke Metadata.. 139
14.2 PInvoke Metadata for Methods.. 141
14.3 DefineMethod for PInvoke .. 141
14.4 DefineMethodImpl for PInvoke.. 141
14.5 DefinePinvokeMap for PInvoke.. 142
14.6 SetPinvokeMap for PInvoke .. 142
14.7 Method Signatures for Plnvoke.. 142
14.8 PInvoke Metadata for Function Parameters....................................... 142
14.9 DefineParam for PInvoke.. 143
14.10 SetParamProps for PInvoke .. 143
14.11 PInvoke Metadata for Struct Arguments... 144
14.12 DefineTypeDef for PInvoke ... 144
14.13 DefineField for PInvoke .. 145
14.14 SetClassLayout for PInvoke (Sequential).. 145
14.15 SetClassLayout for PInvoke (Explicit)... 146
14.16 PInvoke Metadata for Explicit Marshalling... 146
14.17 SetFieldMarshal for PInvoke.. 147
14.18 PInvoke Custom Attributes ... 147

15 Minimal Metadata... 148
15.1 Space Saving.. 148

15.1.1 String Heap... 149
15.1.2 Blob Heap ... 149
15.1.3 UserString Heap... 149
15.1.4 Metadata Tables... 149

15.2 Obfuscation .. 150
15.3 Define and Set.. 150
15.4 One Big Module... 151
15.5 Order of Emission.. 151
15.6 Properties and Events .. 152

Metadata API

Page 9

15.7 NGen... 153
15.8 Details ... 153

15.8.1 DefineAssembly ... 153
15.8.2 DefineFile.. 154
15.8.3 DefineExportedType ... 154
15.8.4 DefineManifestResource .. 154
15.8.5 SetModuleProps ... 155
15.8.6 DefineCustomAttribute.. 155
15.8.7 SetCustomAttributeValue .. 155
15.8.8 DefineTypeDef ... 156
15.8.9 SetTypeDefProps.. 156
15.8.10 DefineMethod .. 156
15.8.11 SetMethodProps... 156
15.8.12 DefineField.. 157
15.8.13 SetFieldProps .. 157
15.8.14 DefineNestedType .. 157
15.8.15 DefineParam.. 158
15.8.16 SetParamProps .. 158
15.8.17 DefineMethodImpl.. 159
15.8.18 SetRVA ... 159
15.8.19 SetFieldRVA .. 159
15.8.20 DefinePinvokeMap.. 159
15.8.21 SetPinvokeMap .. 159
15.8.22 SetFieldMarshal ... 160
15.8.23 DefineAssemblyRef... 160
15.8.24 DefineTypeRefByName ... 161
15.8.25 DefineImportType .. 161
15.8.26 DefineMemberRef... 161
15.8.27 DefineImportMember.. 161
15.8.28 DefineModuleRef .. 162
15.8.29 SetParent.. 162
15.8.30 DefineProperty... 162
15.8.31 SetPropertyProps ... 163
15.8.32 DefineEvent .. 163
15.8.33 SetEventProps ... 164
15.8.34 SetClassLayout .. 164

Metadata API

Page 10

15.8.35 GetTokenFromSig .. 165
15.8.36 DefineUserString.. 165
15.8.37 DeleteToken .. 165

Metadata API

Page 11

1 Overview of the Metadata API
This document defines a set of APIs for emitting and importing metadata. It explains
what metadata is, and how it is used. It describes all of the data structures that are
passed through this API: bitmasks, signatures, custom attributes and marshalling
specifiers.

Metadata is used to describe, on the one hand, runtime types (classes, interfaces
and valuetypes), fields and methods, and, on the other hand, internal
implementation and layout information that is used by the runtime to JIT-compile
MSIL, load classes, execute code, and interoperate with the COM classic or native
world. This information is included with every CLR component, and is available to
the runtime, tools, and services.

Compilers and tools emit metadata by calling the emit APIs during compilation and
link or, with RAD tools, as a part of building components or applications. The APIs
write-to and read-from in-memory data structures. At save time, these in-memory
structures are compressed and persisted in binary format into the target compilation
unit (.obj file), executable file, or stand-alone metadata binary file. When multiple
compilation units are linked to form an .EXE or .DLL, the emit APIs provide a method
used to merge the metadata sections from each compilation unit into a single
integrated metadata binary.

The loader and other runtime tools and services import metadata to obtain
information about components so that tasks such as loading and activation can be
completed.

All manipulation of metadata is performed through the metadata APIs, insulating
tools from the underlying data structures and enabling a pluggable persistence
format architecture that allows runtime binary representations, COM classic type
libraries, and other formats to be imported into or from memory transparently.

To learn more about the Runtime file format in general, of which the metadata
binary is a part, see the “PE File Format Extensions” spec. For a description of the
Runtime type model, refer to the “Virtual Object System” spec. To learn more about
interoperability with COM, refer to the “COM integration” spec. To learn more about
interoperability with native platform APIs, refer to the “Platform Invoke Metadata
Guide”. To learn more about Assemblies, and their metadata APIs, see “Assembly
Metadata API” spec.

In order to emit and import metadata at the low-level described in this spec, you
need to know two things:

• Each method, its arguments and return type – the API. That’s what this
document describes

• Any data structures you must supply as arguments. There are four:
bitmasks, signatures, custom attributes and marshalling descriptors. This
information is described later in this spec.

1.1 Metadata APIs
At any time you might have several distinct areas of in-memory metadata. For
example, you may have one area that maps all of the metadata from an existing
module, held in a file on-disk. At the same time, you may be emitting metadata into
a distinct area of metadata, that you will afterwards save as a module into a new on-

Metadata API

Page 12

disk file. (We use the word “module” to mean a file that contains metadata; typically
it will be a .OBJ, .EXE or .DLL file that also contains MSIL code; but it can also be a
file containing only metadata)

We call each separate area of metadata a scope. Each scope corresponds to a
module. Usually that module has been saved, or will be saved, to an on-disk file.
But there’s no need to do so: scripting tools frequently generate in-memory
metadata that is never persisted into a file. We use the term scope because it
represents the scope within which metadata tokens are defined. That’s to say, a
metadata token with value N completely identifies an in-memory structure (for
example, holding details of a class definition) within a given scope. But that same
value N may correspond to a completely different in-memory structure for a different
scope.

To establish an in-memory metadata scope, use CoCreateInstance for
IMetadataDispenserEx to create a new scope or to open an existing set of metadata
data structures from a file or memory location. With each Define or Open, the caller
specifies which API to receive: The emit API interface, used to write to a metadata
scope, is IMetadataEmit. The import API, which allows tools to read from a metadata
scope, is IMetadataImport.

The metadata APIs described in this specification allow a component's metadata to
be accessed without the class being loaded by the runtime. The primary design goals
for this API include maximizing performance and minimizing overhead – the
metadata engine stops just short of providing direct access to the in-memory data
structures. On the other hand, when a class is loaded at runtime, the loader imports
the metadata into its own data structures, which can be browsed via the Runtime
Reflection services. The Reflection services do much more work for the client than
the metadata APIs do, such as automatically walking the inheritance hierarchy to
obtain information about inherited methods and fields; the metadata APIs return
only the direct member declarations for a given class and expect the API client to
make additional calls to walk the hierarchy and enumerate inherited methods. The
former approach exposes a higher-level view of metadata, where the latter approach
puts the API client in complete control of walking the data structures.

Consistent with the primary design goals, the metadata APIs perform a minimum of
semantic error checking. These methods assume that the tools and services that
emit metadata are enforcing the object system rules outlined in the common type
system and that any additional checking on the part of the metadata engine during
development time is superfluous. Specific comments about what checks are being
performed accompany the specification of each method in this document.

1.2 Metadata Abstractions
Metadata stores declarative information about runtime types (classes, value types,
and interfaces), global-functions and global-variable. Each such abstraction in a
given metadata scope carries an identity as an mdToken (metadata token), where
an mdToken is used by the metadata engine to index into a specific metadata data
table in that scope. The metadata APIs return a token from each Define method and
it is this token that, when passed into the appropriate Get method, is used to obtain
its associated attributes. Note that an mdToken is not an immutable metadata
object identifier: when two scopes are merged, tokens from the import scope are
remapped into tokens in the emit scope. When a metadata scope is saved, there are
various format optimizations that can result in token remaps. Managing tokens is
discussed further in the next section.

Metadata API

Page 13

To be more concrete: a metadata token is a 4-byte value. The most-significant byte
specifies what type of token this is. For example, a value of 1 means it’s a TypeDef
token, whilst a value of 4 means it’s a FieldDef token. (For the full list, with their
values, see the CorTokenType enumeration in CorHdr.h) The lower 3 bytes give the
index of the row, within a MetaData table, that the token refers to. We call those
lower 3 bytes the RID, or Record IDentifier. So, for example, the metadata token
with value 0x01000007 is a ‘shorthand’ way to refer to row number 7 in the TypeDef
table, in the current scope. Similarly, token 0x0400001A refers to row number 26
(decimal) in the FieldDef table in the current scope. We never store anything in row
zero of a metadata table. So a metadata token, whose RID is zero, we call a “nil”
token. The metadata API defines a host of such nil tokens – one for each token type
(for example, mdTypeDefNil, with value 0x01000000).

[The above explanation of RIDs is conceptually correct – however, in reality, the
physical layout of data is much more complicated. Moreover, string tokens mdString
are slightly different: their lower 3 bytes are not a record identifier, but an offset to
their start location in the metadata string pool]

The following abstractions and corresponding mdToken types will be encountered in
the metadata APIs. More details on these abstractions are provided in the
externalization section of the common type system and, to some extent, with the
appropriate Define method in this API specification.

• Module (mdModule): The metadata in a given scope describes a compilation
unit, executable, or other development-, deployment-, or run-time unit, referred
to in this documentation generally as a module. It is possible, although not
required, to declare a name, GUID identifier, custom attributes, etc on the
module as a whole.

• Module references (mdModuleRef): Compile-time references to modules,
recording the source for type and member imports.

• Type declarations (mdTypeDef): Declarations of runtime reference types --
classes and interfaces – and of value types.

• Type references (mdTypeRef): References to runtime reference types and value
types, such as may occur when declaring variables as runtime reference or value
types or in declaring inheritance or implementation hierarchies. In a very real
sense, the collection of type references in a module is the collection of compile-
time import dependencies.

• Method definitions (mdMethodDef): Definitions of methods as members of
classes or interfaces or as global module-level methods.

• Parameter declarations (mdParamDef): The signature of a method
(mdMethodDef) includes the number and types of each of the method
parameters. Therefore, it is not necessary to emit a parameter declaration data
structure for each parameter. However, when there is additional metadata to
persist for the parameter, such as marshaling or type mapping information, an
optional parameter data structure may be created, identified by an mdParamDef
token.

• Field declarations (mdFieldDef): Declarations of data members as members of
classes or interfaces or as global module-level data members.

• Property declarations (mdProperty): Declarations of properties as members of
classes or interfaces.

Metadata API

Page 14

• Event declarations (mdEvent): Declarations of named events as members of
classes or interfaces.

• Member references (mdMemberRef): References to methods and fields. A
member reference is generated in metadata for every method invocation or field
access that is made by any implementation in this module and a token is
persisted in the MSIL stream. (Note that there is no runtime support for property
or event references)

• Interface implementations (mdIfaceImpl): Information about a specific class’s
implementation of a specific interface. This metadata abstraction allows
information to be persisted about the intersection that is neither specific to the
class nor to the interface.

• Method implementations (mdMethodImpl): Information about a specific class’s
implementation of a method inherited via interface inheritance. This metadata
abstraction allows information to be persisted that is specific to the
implementation rather than to the contract; method declaration information
cannot be modified by the implementing class.

• Custom attributes (mdCustomAttribute): Arbitrary data structures associated
with any metadata object that can be referenced with an mdToken (except that
custom attributes themselves cannot have custom attributes).

• Permission set (mdPermission): A declarative security permission set
associated with any one of: mdTypeDef, mdMethodDef and mdAssembly. For
further information, see the specification called “Declarative Security Support”

• Type constructor (mdTypeSpec): An mdTypeSpec token is used to obtain a
token for a type (e.g., a boxed value type) that can be used as input to any MSIL
instruction that takes a type. Refer to the Signature specification for details.

• Signature (mdSignature): An mdSignature token is only needed when passing a
full method signature to an MSIL instruction (e.g., calli) or to encode local
variable signatures used in the PE file. These are referred to as “stand-alone
signatures”. Otherwise, the binary signature encoding associated with
declarations of methods, fields, properties, or references to any of these, is
supplied directly and the metadata manages the associated blob heap
transparently.

• User string (mdString). Like mdSignature, an mdString token is only needed
when passing a string to an MSIL instruction (e.g., ldstr). Otherwise, the
metadata APIs handle all strings (and the associated blob heap) transparently.

Note that there are not two separate token types mdFieldRef and mdMethodRef,
in the above list, as you might have expected. That’s because field and method
references are share the same table, and we have only the single, generic token type
mdMemberRef. Nonetheless, for purposes of clarity, this spec will talk about
mdFieldRef and mdMethodRef tokens as, invented, species of mdMemberRef tokens.

Runtime metadata is extensible. There are three scenarios where this is important:

• The Common Language Subset (CLS) is a specification for conventions that
languages and tools agree to support in a uniform way for better language
integration. The CLS may constrain parts of the common type system model, and
the CLS may introduce higher-level abstractions that are layered over the
common type system. It is important that the metadata be able to capture these
sorts of development-time abstractions that are used by tools even though they
are not recognized or supported explicitly by the runtime.

Metadata API

Page 15

• It should be possible to represent language-specific abstractions in metadata that
are neither common type system nor CLS language abstractions. For example, it
should be possible, over time, to enable languages like VC to not require
separate header files or IDL files in order to use types, methods, and data
members exported by compiled modules.

• It should be possible to encode in member signatures types and type modifiers
that are used in language-specific overloading.

This extensibility comes in the following forms:

• Every metadata object can carry custom attributes, and the metadata APIs
provide a way to declare, enumerate, and retrieve custom attributes. Custom
attributes may be identified by a type reference (mdTypeDef/Ref), where the
structure of the attribute is self-describing (via data members declared on the
type) and the value encoding may be browsed by any tool including the runtime
Reflection services.

• In addition to common type system extensibility, it is possible to emit custom
modifiers into member signatures. Runtime will honor these modifiers for
purposes of method overloading and hiding, as well as for binding, but will not
enforce any of the language-specific semantics.

1.3 Using the APIs and Metadata Tokens
The metadata APIs can be called from C++. The two header files that define the
public APIs and all necessary enums and constants, are CorHdr.h and Cor.h. The
way the metadata APIs are used will depend in part on the kind of client using them.
We can think of clients as falling into one of two general categories:

• Compilers, like VC, that build interim .obj files and then, in a separate linker
phase, merge the individual compilation units into a single target PE file

• RAD tools, that manage all code and data structures in the tool environment until
build time, at which time they build and emit a PE file in a single step

1.3.1 The Complile/Link Style of Interaction
In the compile/link style of interaction, a compiler front end will use the
IMetaDataDispenserEx API to establish an in-memory metadata scope and then use
the IMetaDataEmit API to declare types and members, working with the metadata
abstractions described in the previous section. However, the front end will not be
able to supply method implementation information (e.g., whether the
implementation is managed or unmanaged, MSIL or native code) or RVA information
because it is not known at this time. Instead, the backend and/or linker will need to
be able to supply this information later, as the actual code is compiled and emitted
into the PE file.

The complexity here is that the tool needs to be able to obtain information about the
target “save size” of the metadata binary in order to leave room for it in the PE file,
but it is not ready to save it into the file until the method (and module-level static
data member) RVAs are known and emitted into metadata. In order to calculate the
target save size correctly, the metadata engine must first perform any pre-save
optimizations, since these optimizations, ideally, make the target binary smaller.
Such optimizations might include sorting data structures for faster searching, or
optimizing away (early binding) mdTypeRefs and mdMemberRefs when the reference

Metadata API

Page 16

is to a type or member that is declared in the current scope. These sorts of
optimizations may result in remapping metadata tokens that the tool is going to
expect to be able to use again to emit the implementation and/or RVA information.
This means that the tool and the metadata engine must work together to track token
remaps.

The sequence of calls for persisting metadata during compilation, then, is:

IMetaDataEmit::SetHandler, to supply an IUnknown interface that the
metadata engine can use to query for IID_IMapToken to notify the client of
token remaps. SetHandler may be called at any point after the metadata
scope is created, but certainly before a call to GetSaveSize.

IMetaDataEmit::GetSaveSize, to obtain the save size of the metadata
binary. GetSaveSize uses the IMapToken interface supplied in SetHandler to
notify the client of any token remaps. Note that if SetHandler was not used to
supply an IMapToken interface, no optimizations are performed. This enables
a compiler that is emitting an interim .obj file to skip unneeded optimizations
that are likely to have to be redone after the link and Merge phase, anyway
(see below).

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

The next level of complication comes in the linker phase, when multiple compilation
units are to be merged into a single integrated PE file. In this case, not only do the
metadata scopes need to be merged, but the RVAs will change again as the new PE
file is emitted. In the merge phase, the IMetaDataEmit::Merge method, working with
a single import and a single emit scope with each call, remaps metadata tokens from
the import scope into the emit scope. In addition, the merge may encounter
continuable errors that it needs to be able to notify the client of. After the merge is
complete, emitting the final PE file involves a call to IMetaDataEmit::GetSaveSize,
and another round of token remapping.

The sequence of calls for emitting and persisting metadata by the linker is:

IMetaDataEmit::SetHandler, to supply an IUnknown interface that the
metadata engine can use to query for not only IID_IMapToken, as above, but
also for IID_IMetaDataError. The latter interface is used to notify the client of
any continuable errors that arise from Merge.

IMetaDataEmit::Merge, to merge a specified metadata scope into the
current emit scope. Merge uses the IMapToken interface to notify the client of
token remaps and it uses IMetaDataError to notify the client of continuable
errors.

IMetaDataEmit::GetSaveSize, to obtain the target save size of the
metadata binary. GetSaveSize uses the IMapToken interface supplied in
SetHandler to notify the client of any token remaps. Observe that a tool must
be prepared to handle token remaps in Merge and then again in GetSaveSize
after various format optimizations are performed. The last notification for a
token is the one that is the final mapping that the tool should rely on.

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

Metadata API

Page 17

1.3.2 The RAD Tool Style of Interaction
As in the compile/link style of interaction, a RAD tool will use the
IMetaDataDispenserEx API to establish an in-memory metadata scope and then use
the IMetaDataEmit API to declare types and members, working with the metadata
abstractions described in the previous section. In contrast to the compile/link style,
the RAD tool will typically emit the PE file in a single step. It will likely emit
declaration and implementation information in a single pass. And, it will probably
never need to call Merge. As such, the only reason it might have any need to handle
the complexity of token remaps is if it wants to take advantage of the pre-save
optimizations that are currently performed in GetSaveSize. Strictly speaking, though,
a tool that understands how to emit the metadata in a fully-optimized fashion to
start with doesn’t need the metadata engine to emit a reasonably optimized file.
Although it’s a little dangerous, because future implementations of the metadata
engine and file format might obsolete some optimizations and introduce others, there
is a clear set of rules for how to emit optimized metadata (see Emitting Optimized
Metadata Data Structures).

This means that, after emitting the metadata declarations and implementation
information, the sequence of calls is simply:

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

In the general case, there are probably styles of interaction that lie between these two. Some tools may
want the metadata engine to own optimizations but may not be interested in token remap information. Or,
they may want remap information only for some token types and not others. In truth, a compiler may not
even be interested in performing optimizations when emitting an .obj. In future milestones, we are looking
at a degree of tuning that is client-specified that offers a range of balance between complexity and
optimization.

1.3.3 IMapToken
Any client that implements IMapToken must implement the following method(s):

Map (ULONG tkImp, ULONG tkEmit);

where tkImp is the original token (as known to the client) and tkEmit is the new
token for that metadata object. When the token remap occurs during Merge, the
original token is scoped in the import (source) metadata scope and the new token is
scoped in the emit (target) metadata scope.

1.3.4 IMetaDataError
Any client that implements IMetaDataError must implement the following method(s):

OnError (HRESULT hr, mdToken token);

where hr is the recoverable error that occurred and token is the identity of the
metadata token that was being merged in when the error occurred.

Metadata API

Page 18

1.4 Related Specifications
The following related specifications are augmented, implemented, or enforced by
several of the methods defined in this document:

• Reflection and ReflectionEmit interfaces, which are managed versions of these
unmanaged interfaces

• Extensions to the PE File format, of which binary metadata is a part. These
extensions are included in the “ECMA Partition II : Metadata” specification.

• The Common Type System, which defines the object model that underlies the
comman language runtime (CLR), its externalization in metadata, and its
implications for the runtime. This information is now included in the “ECMA
Partition I : Architecture” specification.

• The “Common Language Subset”, which places a number of modeling restrictions
on the metadata. The metadata design accommodates but does not explicitly
enforce CLS rules. This information is now included in the “ECMA Partition I :
Architecture” specification.

• “COM Integration” and “Platform Invoke”, which describe requirements for
metadata to control how Runtime method invocations and field accesses are
mapped onto underlying legacy services. Further details can be found in the
many documents listed under “Interop Specifications”

1.5 Coding Conventions
The following coding conventions are used by the metadata API.

1.5.1 Handling String Parameters
The metadata API exposes all strings as UNICODE (the on-disk format for symbol
names is actually UTF8, but that is hidden from clients of the API).

Symbol Names

• String parameters that are symbol names are always assumed to be null-
terminated, and no [in] length parameter is needed. Embedded nulls are not
supported.

• If an [in] parameter string is too large to persist without truncation, an error will
be returned.

• Every returned string is a triple of three parameters (actual param names vary):
[in] ULONG cchString, [out]LPCWSTR wzString, [out] ULONG *pchString – where
cchString is the count of characters allocated in the buffer including the
terminating null, wzString is a pointer to the string buffer returned, and pchString
returns the size of the persisted string (including the terminating null) in the
event that the buffer did not allocate sufficient size to return the full string. If the
returned string was truncated, an error indication will be returned and the client
can reallocate the buffer and retry if desired.

User Strings

• User strings may have embedded nulls and should not have a null terminator.

Metadata API

Page 19

• A length must be supplied with the [in] string parameter. The length supplied is
exactly the length that will be stored. If the string ends in a null, it is interpreted
to be part of the string value. If the string is null terminated, the length should
not include the terminating null.

1.5.2 Optional Return Parameters
Many methods in the metadata API that return information, have optional out
parameters – in the summary table for that method, in the “Required?” column, their
entry says “no”. This is common with returned strings, but occurs for other types of
parameter too. If you want that information returned from the call, provide a non-
null pointer value for that argument. If, on the other hand, you are not interested in
that information, simply supply a null pointer, and the method will skip over.

1.5.3 Storing Default Values
Constants can be stored into metadata as default values for Fields, Parameters and
Properties. The constant is specified using 3 parameters called:

• dwDefType – specifies the type of the constant value (for example,
ELEMENT_TYPE_UI2)

• pValue – a void* pointer to a blob giving the actual default value. (For example,
a pointer to the 4-byte DWORD holding 0x0000002A will store a DWORD value of
42 decimal into the metadata)

• cchValue – count of the (Unicode) characters in the sequence pointed-to by
pValue. This is only required if dwDefType = ELEMENT_TYPE_STRING – in all
other cases, the length is inferred from the ELEMENT_TYPE_, obviously.

Note that such default values are not automatically inserted into initialization code,
or into statically-initialized data areas – they are merely recorded into metadata.

The type provided as a default value, via the dwDefType, is limited to being a
primitive, a string, or null. Specifically:

ELEMENT_TYPE_BOOLEAN ELEMENT_TYPE_WCHAR
ELEMENT_TYPE_I1 ELEMENT_TYPE_U1
ELEMENT_TYPE_I2 ELEMENT_TYPE_U2
ELEMENT_TYPE_I4 ELEMENT_TYPE_U4
ELEMENT_TYPE_I8 ELEMENT_TYPE_U8
ELEMENT_TYPE_R4 ELEMENT_TYPE_R8
ELEMENT_TYPE_STRING ELEMENT_TYPE_CLASS

(This list is a subset of the CorElementType enumeration in CorHdr.h)

In the particular case of ELEMENT_TYPE_CLASS, its value can only be null.

Indicate that you do not wish to specify a default value, by providing a value for
dwDefType of all-bits-set (-1).

1.5.4 Null Pointers for Return Parameters
Since the metadata APIs do a minimum of error checking, it’s useful to understand
when they expect that you will provide a non-null pointer for return parameters:

Metadata API

Page 20

• In define methods, a non-null pointer is always required for the return token for
the thing that is being defined: we create one, you get back the token for it.
Don’t look at it if you don’t want it.

• In find methods, we also always expect to return the token for the thing we
successfully find.

• In get methods, you may pass null in for parameters you are not interested in
getting back.

• In set methods, there’s generally no return. You pass in the token for the thing
to be updated, along with the values to update, and the metadata APIs perform
the update.

1.5.5 “Ignore This Argument”
Several methods in the metadata API allow you to change the value an item that was
defined earlier. For example:

HRESULT SetFieldProps(mdFieldDef fd, DWORD dwFieldFlags,

 DWORD dwDefType, void const *pValue, ULONG cchValue)

allows you to change dwFieldFlags, dwDefType and pValue, previously supplied in a
call to DefineField. But what if you want to change dwFieldFlags but not pValue (or
vice versa)? How do you specify this? We obey the following conventions for
method parameters:

• Pointer – use a null pointer to indicate “ignore this argument”

• Value (typically a flags bitmask) – use a value of all bits set (–1) to indicate
“ignore this argument”

1.5.6 Error Returns
Almost all methods in the IMetadataDispenserEx, IMetaDataEmit and
IMetaDataImport interfaces return an HRESULT to indicate their result. This has the
value S_OK if the operation was successful, or another value that describes the
reason why the operation failed.

One general pattern across all the MetaData APIs is that if the caller provides a string
buffer that is too small to hold the results, then we copy as many characters as will
fit, but return the alternate success HRESULT of CLDB_S_TRUNCATION.

Recall that callers of the IMetadata* interfaces are compilers or tools – not end
users. It is the responsibility of these callers to always check the return status from
each call – since these reflect errors on the part of the direct caller (eg a compiler)
than of the end user (eg a programmer).

Metadata API

Page 21

2 IMetadataDispenserEx
The dispenser API is used to map existing metadata so that it can be inspected (and
added to), or to create a fresh in-memory area to define new metadata. In this
section, we also include methods to control how the metadata API operates.

2.1 DefineScope
HRESULT DefineScope(REFCLSID rclsid, DWORD dwCreateFlags,

 REFIID riid, IUnknown **ppIUnk)

Create a fresh area in memory, into which you can create new metadata using the
MetaData Emit API. DefineScope creates a set of in-memory metadata tables of the
specified class, generates a unique guid (module version identifier, or mvid) for the
metadata, and creates an entry in the Module able for the compilation unit being
emitted. If successful, the requested metadata interface is returned. Note that a
developer may attach attributes to the metadata scope as a whole using
IMetadataEmit::SetModuleProps or IMetadataEmit::DefineCustomAttribute, as
appropriate.

in/out Parameter Description Required?

in rclsid The CLSID of the version of metadata structures to create yes

in dwCreateFlags Used to tailor DefineScope behavior. Must be 0 yes

in riid The IID of the interface required yes

out ppIUnk The returned interface, on success.

rclsic should be specified as CLSID_ CorMetaDataRuntime in this release

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

2.2 OpenScope
HRESULT OpenScope(LPCWSTR wzScope, DWORD dwOpenFlags,

 REFIID riid, IUnknown **ppIUnk)

Open an existing file, and map its metadata into memory. That in-memory copy of
the metadata can then be queried using methods from the IMetaDataImport or
added-to using method from the IMetaDataEmit interfaces. Note that the target file
must contain CLR metadata, else the method will fail.

in/out Parameter Description Required?

in wzScope target file yes

in dwOpenFlags 0 = open for read, 1 = open for write yes

in riid The IID of the interface required yes

out ppIUnk The returned interface

Metadata API

Page 22

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

Example:

HRESULT h;
IMetaDataImport* p;
h = OpenScope (L”file:c\\App.Exe”, 0, IID_IMetaDataImport, (IUnknown**) &p);

2.3 OpenScopeOnMemory
HRESULT OpenScopeOnMemory(LPCVOID pData, ULONG cbData,

 DWORD dwOpenFlags, REFIID riid, IUnknown **ppIUnk);

Treat the area of memory specified by the pData and cbData arguments as CLR
metaData. This metaData can then be queried using methods from the
IMetaDataImport interface. This is similar to the OpenScope method, except that
metaData of interest already exists in-memory, rather than in a file on-disk.

in/out Parameter Description Required?

in pData Pointer to start of memory yes

in cbData Size of the memory area, in bytes yes

in dwOpenFlags 0 = open for read, 1 = open for wrie yes

in riid The IID of the interface required yes

out ppIUnk The returned interface

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

2.4 SetOption
You can control how your calls to the metadata API are handled. These settings are
transient; they are not persisted to disk.

The settings are gathered into the following categories:

Duplicate checks Each time you call a method on IMetaDataEmit that creates a
new item, you can ask it to check whether the item already exists in the current
scope. You can control which items are checked and which are not. For example,
you can ask for checking on MethodDefs; in this case, when you call DefineMethod, it
will check that the method does not already exist in the current scope. This check
uses the key that uniquely identifies a given method: parent type, name and
signature

Ref-to-Def optimizations By default, the metadata engine will convert Refs to
Defs where it can (where the referenced item actually exists in the current scope).
You can control which Refs are optimized in this way

Notifications on token movement Controls which token remaps (during
metadata merge) call you back. (Use SetHandler to establish your IMapToken
interface)

ENC Modes – allow control over behaviour of EditAndContinue

Metadata API

Page 23

EmitOutOfOrder Allows you to control which out-of-order ‘errors’ call you back.
(Use SetHandler to establish your IMetaDataError interface). Emitting metadata
‘out-of-order’ is not fatal – it’s just that if you emit it in an order favoured by the
metadata engine, the metadata is more compact and efficient to search)

Import Options Specify which sorts of deleted metadata tokens are returned in
any enumeration. (See DeleteToken for more information)

Generate TCE Adaptors – yes or no

NameSpace Specifies a different namespace than the one provided by the type
library being imported.

ThreadSafetyOptions Specifies whether you want the metadata engine to take out
reader/writer locks to ensure thread safety (default assumes access is single-
threaded by the caller, so no locks are taken)

HRESULT SetOption (REFGUID optionId, const VARIANT *pvalue)

in/out Parameter Description Required?

in optionId Pointer to GUID that specifies required option yes

in pvalue Value to set yes

optionId argument must point to one of the following GUIDs, defined in Cor.h:

• MetaDataCheckDuplicatesFor. pvalue must be a variant of type UI4, holding a
bitmask of which duplicate checks you require. See the CorCheckDuplicatesFor
enum in CorHdr.h

• MetaDataRefToDefCheck. pvalue must be a variant of type UI4, holding a
bitmask of which checks you require. See the CorRefToDefCheck enum in
CorHdr.h

• MetaDataNotificationForTokenMovement. pvalue must be a variant of type UI4,
holding a bitmask of which notifications you require. See the
CorNotificationForTokenMovement enum in CorHdr.h

• MetaDataSetUpdate. pvalue must be a variant of type UI4, holding a bitmask of
which checks you require. See the CorSetUpdate enum in CorHdr.h

• MetaDataErrorIfEmitOutOfOrder. pvalue must be a variant of type UI4, holding a
bitmask of which checks you require. See the CorErrorIfEmitOutOfOrder enum in
CorHdr.h

• MetaDataImportOption. pvalue must be a variant of type UI4, holding a bitmask
of which deleted items you want reported in an enumeration of the metadata.
See the CorImportOptions enum in CorHdr.h

• MetaDataGenerateTCEAdapters. pvalue must be a variant of type BOOL. If set
true, then when we import a type library, we will translate event source
interfaces to add/remove methods.

• MetaDataTypeLibImportNamespace. pvalue must be a variant of type BSTR,
EMPTY or NULL. If pvalue represents a nil value, then the current namespace is
set to null; otherwise the current namespace is set to the string held in the
variant’s BSTR

Metadata API

Page 24

• MetaDataThreadSafetyOptions. pvalue must be a variant of type UI4, holding a
bitmask of which safety options you require. See the CorThreadSafetyOptions
enum in CorHdr.h

2.5 GetOption
Returns the settings for the current metadata scope. See SetOption for details.

HRESULT GetOption(REFGUID optionId, const VARIANT *pvalue)

in/out Parameter Description Required?

in optionId Pointer to GUID that specifies required option yes

in pvalue Value to return yes

Metadata API

Page 25

3 IMetaDataEmit
The emitter API is used by compilers to generate in-memory and on-disk metadata.
This API is implemented directly over the low-level metadata engine APIs, generating
records into the various data structures, which are converted at “save” time to the
target on-disk format.

3.1 Defining, Saving, and Merging Metadata

3.1.1 SetModuleProps
HRESULT SetModuleProps(LPCWSTR wzName)

Records a name for the current scope. This should be the name of the file in which
this module is stored. Eg: “Foo.DLL” – no drive letter, no path

in/out Parameter Description Required?

in wzName Module name in Unicode no

3.1.2 Save
HRESULT Save(LPCWSTR wzFile, DWORD dwSaveFlags)

Saves all of the metadata in the current scope to the specified file. The method
leaves all of the metadata intact

 in/out Parameter Description Required?

in wzFile Name of file to save to. If null, the in-memory copy will be

saved to the last location that was used

no

in dwSaveFlags [reserved] must be 0

3.1.3 SaveToStream
HRESULT SaveToStream(IStream *pIStream, DWORD dwSaveFlags)

Saves all of the metadata in the current scope to the specified stream. The method
leaves all of the metadata intact.

in/out Parameter Description Required?

in pIStream Writeable stream to save to yes

in dwSaveFlags [reserved] must be 0

3.1.4 SaveToMemory
HRESULT SaveToMemory(void *pbData, ULONG cbData)

Metadata API

Page 26

Saves all of the metadata in the current scope to the specified area of memory. The
method leaves all of the metadata intact.

in/out Parameter Description Required?

in pbData Start address at which to write metadata yes

in cbData Size of allocated memory, in bytes yes

3.1.5 GetSaveSize
HRESULT GetSaveSize(CorSaveSize fSave, DWORD *pdwSaveSize)

Calculates the space required, in bytes, to save all of the metadata in the current
scope. (Specifically, a call to the SaveToStream method would emit this number of
bytes)

If the caller implements the IMapToken interface (via SetHandler or Merge), then
GetSaveSize will perform two passes over the metadata in order to optimize and
compress it. Otherwise, no optimizations are performed.

If optimization is performed, the first pass simply sorts the metadata structures so
as to tune the performance of import-time searches. This step will likely result in
moving records around, with the side-effect that tokens the tool has retained for
future reference are invalidated. (Metadata does not inform its caller of these token
changes until after the second pass, however). In the second pass, various
optimizations are performed that are intended to reduce the overall size of the
metadata, such as optimizing away (early binding) mdTypeRefs and mdMemberRefs
when the reference is to a type or member that is declared in the current metadata
scope. In this pass, another round of token mapping occurs. After this pass, the
metadata engine notifies the caller, via its IMapToken interface, of any changed
token values.

in/out Parameter Description Required?

in fSave Requests accurate, or approximate no

out pdwSaveSize Size required to save file

fSave should be one of cssAccurate (the default), or cssQuick (see the CorSaveSize
enum in CorHdr.h). cssAccurate will return the exact save size but takes longer to
calculate. cssQuick will return a size, padded for safety, but takes less time to
calculate. fSave can also have the cssDiscardTransientCAs bit set – this tells
GetSaveSize that it can throw away discardable custom attributes

3.1.6 Merge
HRESULT Merge(IMetaDataImport *pImport, IMapToken *pIMap,

 IUnknown *pHandler)

Starts a merge of metadata from the scope defined by pImport into the current
metadata scope. In so doing, tokens from the imported scope are remapped into the
current scope. Merge uses the IMapToken interface supplied by the caller to notify

Metadata API

Page 27

the caller of each remap; it uses the IMetaDataError interface supplied by the caller
to notify the caller of any errors.

This routine can be called for several import scopes. The actual merge operation,
across all these import scopes is triggered by calling the routine MergeEnd

in/out Parameter Description Required?

in pImport Identifies other metadata scope to be merged yes

in pIMap Interface on which to notify token remaps no

in pHandleer Interface on which to notify errors no

3.1.7 MergeEnd
HRESULT MergeEnd()

This routine triggers the actual merge of metadata, of all import scopes specified by
preceding calls to Merge into the current output scope.

During merge, various errors may be encountered, as follows:

The following special conditions apply to the merge:

• An MVID is never imported, since it is unique to that other metadata

• No existing module-wide properties are overwritten. So, if module properties
were already set for the current scope, no module properties are imported. But,
if module properties have not been set in the current scope, they will be imported
once-only, when they are first encountered. If they are encountered again, they
must be duplicates (eg, when merging .obj files during a VC link step); if they are
not duplicates, based on comparing the values of all module properties (except
MVID), we raise an error

• For TypeDefs, no duplicates will be merged into the current scope. The check for
duplicates is based on fully-qualified name + guid + version number. If there is
a match on name or on guid and any of the other two elements is different, we
raise an error. Else, if there is a full match on 3 items, Merge does a cursory
check to ensure the entries are indeed duplicates – we raise an error if they are
not. This cursory check is based on:

• Same member declarations, in same order. (However, members flagged as
mdPrivateScope are not included in this check; they are merged specially; see
later)

• Same class layout

Observe that this means that a TypeDef must always be fully and consistently
defined in every metadata scope in which it is declared; if its member
implementations (for a class) are spread across multiple compilation units (as
in VC), the full definition is assumed to be present in every scope and not
incremental to each scope. For example, if parameter names are relevant to
the contract, they must be emitted the same way into every scope; if they
are not relevant, they should not be emitted into metadata

The exception is that a TypeDef may have incremental members flagged as
mdPrivateScope. On encountering these, Merge will incrementally add them
to the current scope without regard for duplicates (since only the compiler

Metadata API

Page 28

understands the private scope, the compiler must be responsible for enforcing
rules)

• When merging members that have RVAs, we do not import/merge any of this
information – the compiler is expected to re-emit it

• Custom attributes are merged only at the time we merge the item they are
attached to. For example, custom attributes associated with a class will be
merged when the class is first encountered. If custom attributes are associated
with TypeDefs or MemberDefs that were specific to the compilation unit (e.g.,
time stamp of member compile), these will not be handled specially and it is up
to the compiler to remove or update such metadata.

3.1.8 SetHandler
HRESULT SetHandler(IUnknown *pUnk)

Registers a handler interface through which the caller may receive notification of
errors (IMetaDataError) and of token remaps (IMapToken).

The metadata engine sends notification on the map token interface provided by
SetHandler() for compilers who do not generate records in an optimized way and
would like to save optimized. If IMapToken is not provided via SetHandler, no
optimization will be performed on save except where several import scopes have
been merged using the provided IMapToken on merge for each scope.

in/out Parameter Description Required?

in pUnk Handler to register yes

3.2 Custom Attributes
Custom attributes are just what they say – attributes you can attach to a
programming element, such as a method or field. But these attributes are defined
by the customer – the programmer and/or language – rather than pre-defined by the
runtime itself.

Think of a custom attribute as a triple of (tokenParent, tokenMethod, blob) stored
into metadata. The blob holds the arguments to the class constructor method
specified by tokenMethod. The runtime has a full understanding of the contents of
this blob; on request, it will instantiate the attribute-object that the blob represents,
attaching it to the item whose token is tokenParent.

3.2.1 Using Custom Attributes
The model for using custom attributes has two steps. First, the programmer defines
a custom attribute-class, and the language emits that definition into the metadata,
just as it would for any regular class. Here is an example of defining an attribute-
class, called Location, in some invented programming language:

[attribute] class Location {
 string name;
 Location (string n) {name = n;}
}

Metadata API

Page 29

Second, the programmer defines an instance of that attribute class (let’s call it an
attribute-object) and attaches it to some programming element. Here is an example
of defining two Location attribute-objects and attaching them to two classes,
Television and Refrigerator. Note that we define the attribute-object by providing a
literal string argument to its Location constructor method:

[Location (“Aisle 3”)] class Television { . . . }

[Location (“Aisle 42”)] class Refrigerator { . . . }

As a result, the Television class at runtime will always have an attribute-object
attached (whose name field holds the string “Aisle 3”) whilst the Refrigerator class at
runtime will have an attribute-object attached (whose name field holds the string
“Aisle 42”)

Note that attribute-classes are not distinguished in any way whatsoever by the
runtime – their definition within metadata looks just like any regular type definition.
Our use therefore of “attribute-class” in this spec is simply to help understanding.

Custom attribute-objects can be attached to any metadata item that has a metadata
token: mdTypeDef, mdTypeRef, mdMethod, mdField, mdParameter, etc. Duplicates
are supported, such that a given programming element may well have multiple
attribute-objects of the same attribute-class attached to it. [so, in the example
above, class Television might have two Location attribute-objects – with name fields
of “Aisle 42” and “Back Store”]

It is legal to attach a custom attribute-object to a custom attribute-class. (but you
cannot attach a custom-attribute object to any individual runtime object)

Custom attributes have the following characteristics:

• Require up-front design before attributes can be emitted

• Capitalize on the runtime infrastructure for class identity, structure, and
versioning

• Allow tools, services, and third parties (the primary customers for this
mechanism) to extend the types of information that may be carried in metadata
without having to depend on the runtime to maintain and version that
information

• Although each language or tool will provide a language-specific syntax and
conventions for using custom attributes, the self-describing nature of these
attributes will enable tools to provide drop-down lists and other developer aids

• Runtime Reflection services will support browsing over these custom attributes,
since they are self-describing.

3.2.2 DefineCustomAttribute
HRESULT DefineCustomAttribute(mdToken tkOwner, mdToken tkAttrib,

 void const *pBlob, ULONG cbBlob, mdCustomAttribute *pca)

Defines a custom attribute-object, attached to the specified parent (tkOwner)

Metadata API

Page 30

in/out Parameter Description Required?

in tkOwner Token for the owner item yes

in tkCtor Token that identifies the custom attribute yes

in pBlob Pointer to blob no

in cbBlob Count of bytes in pBlob no

out pca CustomAttribute token assigned

tkOwner may be any valid metadata token, except an mdCustomAttribute.

tkCtor is the token that identifies the constructor method to execute to create the
custom attribute-object.

The format of pBlob for defining a custom attribute is defined in later in this spec.
(broadly speaking, the blob records the argument values to the class constructor,
together with zero or more values for named fields/properites – in other words, the
information needed to instantiate the object specified at the time the metadata was
emitted). If the constructor requires no arguments, then there is no need to provide
a blob argument.

3.2.3 SetCustomAttributeValue
HRESULT SetCustomAttributeValue(mdCustomAttribute pca,

 void const *pBlob, ULONG cbBlob)

Sets the value of an existing custom attribute to have a new value. The value that
was previously defined is replaced with this new value.

in/out Parameter Description Required?

in pca Token of target custom attribute yes

in pBlob Pointer to blob yes

in cbBlob Count of bytes in pBlob yes

3.3 Building Type Definitions

3.3.1 DefineTypeDef
HRESULT DefineTypeDef(LPCWSTR wzName, DWORD dwTypeDefFlags,

 mdToken tkExtends, mdToken rtkImplements[], mdTypeDef *ptd)

Defines a type. A flag in dwTypeDefFlags specifies whether the type being created is
a common type system reference type (class or interface) or a common type system
value type.

Duplicates are disallowed. So, within any scope, wzName must be unique.

Depending on the parameters supplied, this method, as a side effect, may also
create an InterfaceImpl record for each interface inherited or implemented by this
type. None of these InterfaceImpl tokens are returned by this method – if a client

Metadata API

Page 31

wants to later add/modify these InterfaceImpls, it must use IMetaDataImport to
enumerate them. If COM semantics of ‘default interface’ are desired, then it’s
important to supply the default interface as the first in rtkImplements[]; a custom
attribute set on the class will indicate that it does have a default interface (which is
always assumed to be the first InterfaceImpl declared for the class). Refer to the
COM Integration spec for more details.

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass no

in rtkImplements[] Array of tokens specifying the interfaces that this class or

interface implements

no

out ptd TypeDef token assigned

dwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h.

tkExtends must be an mdTypeDef or an mdTypeRef.

Each element of the rtkImplements[] array holds an mdTypeDef or an mdTypeRef.
The last element in the array must be mdTokenNil.

3.3.2 SetTypeDefProps
HRESULT SetTypeDefProps(mdTypeDef td, DWORD dwTypeDefFlags,

 mdToken tkExtends, DWORD mdToken rtkImplements[])

Sets the attributes of an existing type, previously defined using the DefineTypeDef
method. This is useful when the original definition supplied only minimal
information, perhaps corresponding to a forward reference in the compiler’s source
language. Note that you cannot use this method to change the type’s name. In all
other respects however, SetTypeDefProps has essentially the same behavior as
DefineTypeDef and, depending on the parameters supplied, it may also create one or
more InterfaceImpl data structures.

If you supply a value for any argument, it will supersede the value you supplied in
the earlier call to DefineTypeDef. If you want to leave the original value unchanged,
mark that argument as “to be ignored” – see section 1.5.5 for details.

in/out Parameter Description Required?

in td TypeDef token obtained from original call to DefineTypeDef yes

in dwTypeDefFlags Typedef attributes no

in tkExtends Token of the superclass. Obtained from a previous call to

DefineImportType, or null.

no

in rtkImplements[] Array of tokens for the interfaces that this type implements.

These TypeRef tokens are obtained via DefineImportType

no

dwTypeDefFlags is a bitmask from the CorTypeAttr enumeration in CorHdr.h.

tkExtends must be an mdTypeDef or an mdTypeRef or nil

Metadata API

Page 32

Each element of rtkImplements[] is an mdTypeDef or an mdTypeRef. (Typically, you
obtain required TypeRef tokens by a call to DefineImportType) The last element in
the array must be mdTokenNil.

3.4 Declaring and Defining Members

3.4.1 DefineMethod
HRESULT DefineMethod(mdTypeDef td, LPCWSTR wzName,

 DWORD dwMethodFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 ULONG ulCodeRVA, DWORD dwImplFlags, mdMethodDef *pmd)

Defines a method (of a class or interface), or a global-function. If a method, then
use td to specify the TypeDef token for its enclosing class or interface. If a global-
function, then set td to mdTokenNil.

The metadata API guarantees to persist methods in the same order as the caller
emits them for a given enclosing class or interface (its td argument).

See later in this spec for details on how to set the method declaration flags
(dwMethodFlags) and method implementation flags (dwImplFlags).

The runtime uses MethodDefs to set up vtable slots. In the case where one or more
slots need to be skipped (e.g., to preserve parity with a COM interface layout), a
dummy method would be defined in order to take up the slot(s) in the vtable. The
method would be defined using the “special name” flag (mdRTSpecialName), with
the name encoded as:

_VtblGap<SequenceNumber><_CountOfSlots>

where SequenceNumber is the sequence number of the method and
CountOfSlots is the number of slots to skip in the vtable.

If CountOfSlots is omitted, 1 is assumed. These dummy methods are not callable from
either managed or unmanaged code. Any attempt to call these methods, either from
managed or unmanaged code will generate an exception. Their only purpose is to
take up space in the vtable that the runtime generates for COM integration. They
have no impact on managed clients that may be using the interface.

The format of the signature blob is specified later in this spec. (briefly, the blob
captures the calling convention, the type of each parameter, and the return type).
The caller builds the signature blob. This API assumes it is a valid method signature
in the emit scope. No checks are performed; the signature is persisted as supplied.
If you need to specify additional information for any parameters, use the
SetParamProps method.

You should not define duplicate methods. That’s to say, the triple (td, wzName,
pvSig) should be unique. There is one exception to this rule: you can define a
duplicate triple so long as one of those definitions sets the mdPrivateScope bit in the
dwMethodFlags argument. (The mdPrivateScope bit means the compiler will not
emit a reference to this methodDef). A typical use is when defining a function that is
private to a compiland (the runtime does not recognize or support compiland scope).
Note that any mdPrivateScope methods do not affect the metadata ordering
guarantee. Ideally, tools and compilers would emit scoped statics after all the other

Metadata API

Page 33

methods, but it should be sufficient to say that even if mdPrivateScope members are
interleaved in method sequences they are simply ignored when it comes to layout.

Method implementation information is often not known at the time the method is
declared, e.g. in languages where the front-end calls DefineMethod but it is the
backend that supplies implementation information and the linker that supplies code
address information. As such, ulCodeRVA and dwImplFlags are not required to be
supplied with DefineMethod. They may be supplied later via SetMethodImplFlags or
SetRVA, as appropriate.

In some situations, such as PInvoke or COMinterop scenarios, the method body will
not be supplied, and ulCodeRVA will remain 0. In these situations, the method
should not be tagged as abstract, since the runtime will locate the implementation.
(See interop specs for more detail).

in/out Parameter Description Required?

in td Typedef token of parent no

in wzName Member name in Unicode yes

in dwMethodFlags Member attributes yes

in pvSig Method signature yes

in cbSig Count of bytes in pvSig yes

in ulCodeRVA Address of code no, may be 0

in dwImplFlags Implementation flags for method no, may be 0 or all 1s

out pmd Member token

dwMethodFlags is a bitmask from the CorMethodAttr enum in CorHdr.h.

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h.

3.4.2 SetMethodProps
HRESULT SetMethodProps(mdMethodDef md, DWORD dwMethodFlags,

 ULONG ulCodeRVA, DWORD dwImplFlags)

Changes the settings for a previously-defined method.

in/out Parameter Description Required?

in md Token for method to be changed yes

in dwMethodFlags Member attributes no

in ulCodeRVA Address of code no

in dwImplFlags Implementation flags for method no

dwMethodFlags is a bitmask from the CorMethodAttr enumeration in CorHdr.h.

ulCodeRVA is the address at which the method’s code starts.

dwImplFlags is a bitmask from the CorMethodImpl enumeration in CorHdr.h.

Metadata API

Page 34

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineMethod. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for details.

3.4.3 DefineField
HRESULT DefineField(mdTypeDef td, LPCWSTR wzName,

 DWORD dwFieldFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 DWORD dwDefType, void const *pValue, ULONG cchValue,

 mdFieldDef *pmd)

Defines a field. The field may be specified as global (if td = mdTokenNil) or as a
member of an existing class or interface (td = the TypeDef token for that parent
class or interface).

The metadata API guarantees to persist the fields in the same order as the caller
emits them for a given parent (the td argument).

See section 10 for the format of the signature blob. It is built by the client and is
assumed to be a valid type signature in the current scope. No checks are
performed: the signature is persisted as supplied.

You should not define duplicate fields. That’s to say, the triple (td, wzName and
pvSig) should be unique. However, there is one exception to this rule: you can
define a duplicate triple so long as one of those definitions sets the fdPrivateScope
bit in the dwFieldFlags argument. (The fdPrivateScope bit means this field was
emitted solely for use by the compiler – for example, to obtain a metadata token to
pass to MSIL. The compiler takes on responsiblity to never create a FieldRef in any
other module, to this field. A typical use is when defining a static local variable in a
method – static in the sense that its visibility is limited to the current compiland).

You can use this method to save a default value for the property, via the dwDefType,
pValue and cchValue parameters – see 1.5.3 for details.

Global data may need initialization upon module load. The design approach is for the compiler to emit one
or more function definitions that correspond to the initializers. Rather than providing any runtime support
for calling the initializers, the compiler will call them explicitly, in the appropriate sequence, from the
body of the module entry point. As such, there is neither special-purpose metadata nor runtime support
needed to initialize the module’s static data members.

Metadata API

Page 35

in/out Parameter Description Required?

in td Typedef token for the enclosing class or interface yes

in wzName Field name in Unicode yes

in dwFieldFlags Field attributes yes

in pvSig Field signature as a blob yes

in cbSig Count of bytes in pvSig yes

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cchValue Size in (Unicode) characters of pValue no

out pmd FieldDef token assigned

dwFieldFlags is a bitmask from the CorFieldAttr enumeration in CorHdr.h.

dwDefType is a value from the CorElementType enumeration in CorHdr.h. If you do
not want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END for dwDefType.

3.4.4 SetFieldProps
HRESULT SetFieldProps(mdFieldDef fd, DWORD dwFieldFlags,

 DWORD dwDefType, void const *pValue, ULONG cchValue)

Sets the properties of an existing field. See the description of DefineField for more
information.

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineField. If you want to leave the original value unchanged,
mark the argument as “to be ignored” – see section 1.5.5 for details.

in/out Parameter Description Required?

in fd Token for the target field yes

in dwFieldFlags Field attributes no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cchValue Size in (Unicode) characters of pValue no

dwFieldFlags is a bitmask from the CorFieldAttr enum in CorHdr.h.

dwDefType is a value from the CorElementType enum in CorHdr.h. If you do not
want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END.

3.4.5 DefineNestedType
HRESULT DefineNestedType(LPCWSTR wzName, DWORD dwTypeDefFlags,

 mdToken tkExtends, mdToken rtkImplements[],

Metadata API

Page 36

 mdTypeDef tdEncloser, mdTypeDef *ptd)

Defines a type that is lexically nested within an enclosing type. This call is analogous
to DefineTypeDef – but has an extra argument, tdEncloser, to denote the type that
encloses this type. (see DefineTypeDef – section 3.3.1 for more detail)

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass yes

in rtkImplements[] Array of tokens specifying the interfaces that this class or

interface implements

no

in tdEncloser Token of the enclosing type yes

out ptd TypeDef token assigned

Supply the simple, unmangled name of the type in wzName

dwFlags is a bitmask from the CorTypeAttr enum in CorHdr.h. You must set one of
the tdNestedXXX bits – that’s to say, one of tdNestedPublic, tdNestedPrivate,
tdNestedFamily, tdNestedAssembly, tdNestedFamANDAssem or
tdNestedFamORAssem.

tkExtends must be a TypeDef or a TypeRef

tdEncloser must be a TypeDef (in other words, the enclosing class is defined within
this same module). It cannot be a TypeRef.

Each element of the rtkImplements[] array holds an mdTypeDef or an mdTypeRef.
The last element in the array must be mdTokenNil.

3.4.6 DefineParam
HRESULT DefineParam(mdMethodDef md, ULONG ulParamSeq,

 LPCWSTR wzName, DWORD dwParamFlags, DWORD dwDefType,

 void const *pValue, ULONG cchValue, mdParamDef *ppd)

Defines extra information for a method parameter (beyond what could have been
supplied in the definition of its corresponding method signature)

You can use this method to save a default value for the property, via the dwDefType,
pValue and cchValue parameters – see 1.5.3 for details.

Note that even if you specify that all optional parameters to this call are to be
ignored (see 1.5.5), metadata will still create a ParamDef record and return its
assigned token.

Metadata API

Page 37

in/out Parameter Description Required?

in md Token for the method whose parameter is being defined yes

in ulParamSeq Parameter sequence number yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cchValue Size in (Unicode) characters of pValue no

out ppd ParamDef token assigned

ulParamSeq specifies the parameter sequence number, starting at 1. Use a value of
0 to mean the method return value.

wzName is the name to give the parameter. If you specify null, this argument is
ignored. If you wish to remove any previous-supplied name, supply an empty
strring for wzName.

dwParamFlags is a bitmask from the CorParamAttr enumeration in CorHdr.h. If you
specify all-bits-set (-1), then this argument will be ignored (see 1.5.5)

3.4.7 SetParamProps
HRESULT SetParamProps(mdParamDef pd, LPCWSTR wzName,

 DWORD dwParamFlags, DWORD dwDefType,

 void const *pValue, ULONG cchValue)

Sets the attributes for a specified method parameter. See the description of
DefineParam for details.

in/out Parameter Description Required?

in pd Token for target parameter yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cchValue Size in (Unicode) characters of pValue no

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineParam. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for details.

3.4.8 DefineMethodImpl
HRESULT DefineMethodImpl(mdTypeDef td, mdToken tkBody,

 mdToken tkDecl)

Metadata API

Page 38

Defines how a class implements a method that it inherits from an interface. td
specifies the class that is implementing the method. tkBody specifies the code that
is to be used to implement the method. tdDecl specifies the method in the interface
for which we are providing a code body

in/out Parameter Description Required?

in td Typedef token of the implementing class yes

in tkBody MethodDef or MethodRef token of the code body yes

in tkDecl MethodDef or MethodRef token of the interface method being

implemented

yes

3.4.9 SetRVA
HRESULT SetRVA(mdMethodDef md, ULONG ulRVA)

Sets or replaces the RVA for an existing MethodDef

in/out Parameter Description Required?

in tk Token for target method or method implementation yes

in ulRVA Address of code or data area yes

3.4.10 SetFieldRVA
HRESULT SetFieldRVA(mdFieldDef fd, ULONG ulRVA)

Sets or replaces the RVA for an existing global-variable. In general, global-variables
don’t need to be declared at all in metadata: they are static data laid out by the
compiler and allocated in the PE file in which they are declared and used; access to
them is entirely an internal implementation issue. However, when a global variable
is to be exported to managed code from the module, a metadata declaration is
needed.

in/out Parameter Description Required?

in fd Token for target field yes

in ulRVA Address of code or data area yes

Metadata API

Page 39

3.4.11 DefinePinvokeMap
HRESULT DefinePinvokeMap(mdToken tk, DWORD dwMappingFlags,

 LPCWSTR wzImportName, mdModuleRef mrImportDLL)

Defines information for a method that will be used by PInvoke (Runtime service that
supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token for target method yes

in dwMappingFlags Flags used by Pinvoke to do the mapping no

in wzImportName Name of target export method in unmanaged DLL no

in mrImportDLL Token for target native DLL yes

tk is an mdMethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h

wzImportName may be the simple name of the imported function (eg “MessageBox”)
or its ordinal, encoded as a decimal integer preceded by a # character (eg “#123”)

3.4.12 SetPinvokeMap
HRESULT SetPinvokeMap(mdToken tk, DWORD dwMappingFlags,

 LPCWSTR wzImportName, mdModuleRef mrImportDLL)

Sets information for a method that will be used by PInvoke (runtime service that
supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token to which mapping info applies yes

in dwMappingFlags Flags used by pinvoke to do the mapping no

in wzImportName Name of target export in native DLL no

in mdImportDLL mdModuleRef token for target unmanaged DLL no

tk is an mdMethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h.

wzImportName may be the simple name of the imported function (eg “MessageBox”)
or its ordinal, encoded as a decimal integer preceded by a # character (eg “#123”)

3.4.13 SetFieldMarshal
HRESULT SetFieldMarshal(mdToken tk, PCCOR_SIGNATURE pvUnmgdType,

 ULONG cbUnmgdType)

Metadata API

Page 40

Sets marshaling information for a field, method return, or method parameter.
Specifically, you specify the unmanaged type that this data item should be
marshalled to and from. See the “COM Integration” and “Platform Invoke” specs for
details on when/where unmananaged type information is used and for the format of
the unmanaged type signature blob

in/out Parameter Description Required?

in tk Token for target data item yes

in pvUnmgdType Signature for unmanaged type yes

in cbUnmgdType Count of bytes in pvUnmgdType yes

tk is an mdFieldDef or mdParamDef that specifies the target field or parameter

3.5 Building Type and Member References

3.5.1 DefineTypeRefByName
HRESULT DefineTypeRefByName(mdToken tkResScope,

 LPCWSTR wzName, mdTypeRef *ptr)

Defines a reference to a type that exists in another module. This method does not
look into that other module. Therefore, attempting to resolve the type reference
might fail at runtime

in/out Parameter Description Required?

in tkResScope Token for the resolution scope: ModuleRef if defined

in same assembly as caller; AssemblyRef if defined

in a different assembly than caller; TypeRef if this is

a nested type; Module if defined in same module; or

nil

yes

in wzName Name of target type in Unicode yes

out ptr TypeRef token assigned

tkResScope must be an mdModuleRef, mdAssemblyRef, mdTypeRef, mdModule or
nil. These are used as follows:

• If the target Type is defined in a different module, but one which lies in the
same assembly as the current module, then you should supply an
mdModuleRef to that other module (eg to “Foo.DLL”)

• If the target Type is defined in a module which lies in a different assembly
from the current module, then you should supply an mdAssemblyRef to that
other assembly (eg to “MyAssem” – no file extension)

• If the target Type is a nested Type, then supply an mdTypeRef to its
enclosing Type

• If the target Type exists in this same module, then supply an mdModule for
the current module – the one you obtain by calling GetModuleFromScope)
Note that this is a legal, but rare, case – you can almost use a TypeDef
instead!

Metadata API

Page 41

• If you don’t know the final module in which the reference will resolve, you
may supply a nil token. However, this is only valid as a temporary state. The
token must be fixed up by the time the Runtime loader ‘sees’ this TypeRef.
One example where this is used is when VC compiles separate .cpp files into
separate .obj files. The Linker ‘joins’ them together into one image (.dll or
.exe file) – as part of that process, it calls metadata Merge code with
optimizes these nil-scoped TypeRefs to be replaced by the corresponding
TypeDef. This ‘trick’ does not work if the TypeRef would have to resolve
outside the merged image

3.5.2 DefineImportType
HRESULT DefineImportType(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue, ULONG cbHashValue,

 IMetaDataImport *pImport,

 mdTypeDef tdImport, IMetaDataAssemblyEmit *pAssemEmit,

 mdTypeRef *ptr)

Defines a reference to a type that exists in another module or assembly. The
method looks up the tdImport token in that other module, specified via a
combination of pAssemImport, pbHashValue, cbHashValue and pImport, and
retrieves its properties. It uses this information to define a TypeRef in the current
scope.

in/out Parameter Description Required?

in pAssemImport Assembly scope containing the tdImport TypeDef yes

in pbHashValue Blob holding hash for assembly pAssemImport yes

in cbHashValue Count of bytes in pbHashValue yes

in pImport Metadata scope (module) holding target Type yes

in tdImport TypeRef token for target Type within pImport scope yes

in pAssemEmit Assembly scope for output yes

out ptr TypeRef token assigned

3.5.3 DefineMemberRef
HRESULT DefineMemberRef(mdToken tkImport, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMemberRef *pmr)

Defines a reference to a member (field, method, global-variable, global-function)
that exists in another module. This method does not look up that other module; so
the compiler takes on responsibility to ensure the MemberRef will bind successfully at
runtime.

You specify the member you are interested in by giving its name (wzName), its
signature (pvSig, cbSig), and the a reference to the class or interface in that other
module , for its class or interface (tkImport). If the target member is a global-

Metadata API

Page 42

variable or global-function, then tkImport must be the mdModuleRef token for that
module.

You obtain the tkImport token from a previous call to DefineTypeRefByName,
DefineImportType, or DefineModuleRef.

You can specify tkImport as mdTokenNil. This indicates that the imported member’s
parent will be resolved later by the compiler or linker (the typical scenario is when a
global function or data member is being imported from a .obj file that will ultimately
be linked into the current module and the metadata merged). Ultimately, all
MemberRefs must be fully-resolved to have a consistent, loadable module.

Note: every member reference must have a reference scope that is one of:

• TypeRef token, if member is referenced on an imported type

• ModuleRef token, if member is a global-variable or global-function

• MethodDef token, if member is a call site signature for a vararg method defined
in the same module

• TypeSpec token, if member is a member of a constructed type (eg an array)

Note too: as an optimization (see Metadata Optimizations), tkImport may be an
mdMethodDef, if the reference is not really an import but is simply a callsite
reference that could not be optimized away. This can occur when a call is made to a
vararg function where additional arguments are passed on the call. In this case, we
can’t just optimize the MemberRef away if we otherwise could (see Metadata
Optimizations for details), but at the same time there is no need to incur the extra
runtime overhead to do a full resolution when the resolution may be early bound.
So, we persist the “parent” of the MemberRef as the MethodDef token of the method
declaration and the MemberRef is called “fully resolved.”

in/out Parameter Description Required?

in tkImport Token for the target member’s class or interface. Or, if the

member is global, the ModuleRef for that other file

yes

in wzName Name of the target member yes

in pvSig Signature of the target member yes

in cbSig Count of bytes in pvSig yes

out pmr MemberRef token assigned

tkImport must be one of mdTypeRef, mdModuleRef, mdMethodDef or mdTypeSpec,
or nil. In the latter case, we look up a the function declared global in the current
scope.

3.5.4 DefineImportMember
HRESULT DefineImportMember(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue, ULONG cbHashValue,

 IMetaDataImport *pImport,

 mdToken mbMember, IMetaDataAssemblyEmit *pAssemEmit,

 mdToken tkParent, mdMemberRef *pmr)

Metadata API

Page 43

Defines a reference to a member (field, method), global-variable or global-function,
that exists in another module.

Generally, before you create a MemberRef to any member in that other module, you
need to create a TypeRef for its enclosing class or module, that parallels its enclosing
class or module in the other module. It is this enclosing TypeRef of MemberRef that
you supply as the tkParent argument. So:

• If the target member is a field or method, then you must create a TypeRef, in the
current scope, for its enclosing class; do this with a call to DefineTypeRefByName
or DefineImportType

• If the target member is a global-variable or global-function (ie not a member of
any class or interface), then you must create a ModuleRef, in the current scope,
for that other module; do this with a call to DefineModuleRef.

There is one exception to having to supply a valid TypeRef or ModuleRef for the
tkParent argument: if the enclosing class, interface or module will be resolved later
by the compiler or linker, then supply it as mdTokenNil. (The only scenario is when
a global-function or global-variable is being imported from a .obj file that will
ultimately be linked into the current module and the metadata merged).

The method looks up the mbMember token in that other module, specified by
PImport, and retrieves its properties. It uses this information to call the
DefineMemberRef method, in the current scope.

in/out Parameter Description Required?

in pAssemImport Assembly scope containing the tdImport TypeDef no

in pbHashValue Blob holding hash for assembly pAssemImport no

in cbHashValue Count of bytes in pbHashValue no

in pImport Metadata scope (module) holding target Type yes

in mbMember MethodDef or FieldDef token for target member within

pImport scope

yes

in pAssemEmit Assembly scope for output no

in tkParent TypeRef or ModuleRef token for the class that owns the

target member member

yes

out ptr TypeRef token assigned

mdMember is an mdFieldDef, mdMethodDef or mdProperty

3.5.5 DefineModuleRef
HRESULT DefineModuleRef(LPCWSTR wzName, mdModuleRef *pmur)

Defines a reference to another module. Note that the method does not check
whether the specified external module actually exists.

wzName should be a file name and extension – but no drive letter or file path. For
example, “c:\MyApp\Widgets.dll” is wrong – use “Widgets.dll”

in/out Parameter Description Required?

Metadata API

Page 44

in wzName Name of the other metadata file. Typically, a DLL yes

out pmur ModuleRef token assigned

3.5.6 SetParent
HRESULT SetParent(mdMemberRef mr, mdToken tk)

Sets the parent of a MemberRef to a new value. This method is typically used by a
compiler or tool (like VC) that emits individual .obj files, each with its own metadata;
these .obj files are later merged into a single image. This method is used to fix up
module import scopes.

in/out Parameter Description Required?

in mr The MemberRef token to be re-parented yes

in tk Token for the new parent yes

The parent token (tk) may be any of mdTypeRef, mdModuleRef, mdMethodDef,
mdTypeDef or mdTokenNil

3.6 Declaring Events and Properties

3.6.1 DefineProperty
HRESULT DefineProperty(mdTypeDef td, LPCWSTR wzProperty,

 DWORD dwPropFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 DWORD dwDefType, void const *pValue, ULONG cchValue,

 mdMethodDef mdSetter, mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[], mdFieldDef fdBackingField,

 mdProperty *pmdProp)

A property is like a field within a class. But instead of accessing the value stored in
that field location, a property can execute set/get code. You might use this, for
example, to range-check a value before setting the property; but the code can also
be as complex as the developer chooses. A language may choose to have users
write syntax that looks like regular field access (x = foo.prop) but execute property
accessor code, ‘behind the scenes’.

Examples of using properties include:

• enhanced UI semantics, by presenting the object’s state as the values of its
properties and allowing the user to manipulate state by changing the values
through the UI

• enhanced language support, by abstracting a notion of a property name/identifier
that can be used in lieu of explicit method invocation in assignment statements
and expressions

• rich infrastructure services such as transparent persistence for properties that are
tagged as being part of the persistent state of the object

Metadata API

Page 45

A property is defined, using DefineProperty, in a similar way to how you would define
a method of a class. As for a method, you specify the property by giving its owner,
name, type, and formal parameter list. For indexed properties, the property can be
said to have a signature that is its return type plus the types of its parameters.

You can define more than just setter and getter methods for a property. Simply
provide their tokens in the rmdOtherMethods[] array.

In this version of the runtime, there is no built-in support for properties at runtime.
That’s to say, compilers that provide properties must resolve any compile-time
reference to a property into its corresponding method invocation; the metadata
provides the information necessary for the compiler to do that resolution. In support
of dynamic invocation, the Reflection APIs provide this same feature, to resolve
property-to-method.

You can use this method to save a default value for the property, via the dwDefType,
pValue and cchValue parameters – see 1.5.3 for details.

in/out Parameter Description Required?

in td Token for class or interface on which property is being

defined

yes

in wzProperty Name of property yes

in dwPropFlags Property flags yes

in pvSig Property signature yes

in cbSig Count of bytes in pvSig yes

in dwDefType Type of property’s default value no

in pValue Default value for property no

in cchValue Count of (Unicode) characters in pValue no

in mdSetter Method that sets the property value no

in mdGetter Method that gets the property value no

in rmdOtherMethods[] Array of other methods associated with the property.

Terminate array with an mdTokenNil.

no

in fdBackingField Field on the same enclosing class or interface that backs

the property

no

out pmdProp Property token assigned

dwPropFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

3.6.2 SetPropertyProps
HRESULT SetPropertyProps(mdProperty pr, DWORD dwPropFlags,

 DWORD dwDefType, void const *pValue, ULONG cchValue,

 mdMethodDef mdSetter, mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[], mdFieldDef fdBackingField)

Sets the information stored in metadata for a property, previously defined with a call
to DefineProperty.

Metadata API

Page 46

You can use this method to save a default value for the property, via the dwDefType,
pValue and cchValue parameters – see 1.5.3 for details.

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineProperty. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for details.

in/out Parameter Description Required?

in pr Token for property to be changed yes

in dwPropFlags Property flags yes

in dwDefType Type of property’s default value no

in pValue Default value for property no

in cchValue Count of (Unicode) characters in pValue no

in mdSetter Method that sets the property value no

in mdGetter Method that gets the property value no

in rmdOtherMethods[] Array of other methods associated with the property.

Terminate array with an mdTokenNil.

no

in fdBackingField Field on the same enclosing class or interface that backs

the property

no

dwPropFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

3.6.3 DefineEvent
An event is treated in metadata in a similar manner to a property – as a collection of
methods defined upon a class or interface. But runtime provides no support for
events: the compiler must translate all references to events into calls to the
appropriate method.

HRESULT DefineEvent(mdTypeDef td, LPCWSTR wzEvent,

 DWORD dwEventFlags, mdToken tkEventType, mdMethodDef mdAddOn,

 mdMethodDef mdRemoveOn, mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[], mdEvent *pmdEvent)

Defines an event source for a class or interface.

Metadata API

Page 47

in/out Parameter Description Required?

in td Token of target class or interface yes

in wzEvent Name of event yes

in dwEventFlags Event flags no

in tkEventType Token for the Event class yes

in mdAddOn Method used to subscribe to the event, or nil yes

in mdRemoveOn Method used to unsubscribe to the event, or nil yes

in mdFire Method used (by a subclass) to fire the event yes

in rmdOtherMethods[] Array of tokens for other methods associated with the

event

no

out pmdEvent Event token assigned

td must be an mdTypeDef or mdTypeDefNil

wzEvent specifies the name of the event. This must be unique across all event
names that the class or interface exposes

dwEventFlags is drawn from the CorEventAttr enum in CorHdr.h

tkEventType must be an mdTypeDef, mdTypeRef or nil

mdAddOn, mdRemoveOn and mdFire must each be an mdMethodDef, mdMethodRef
or nil

rmdOtherMethods [] must each be an mdMethodDef, mdMethodRef. Terminate the
array with an mdMethodDefNil token.

3.6.4 SetEventProps
HRESULT DefineEvent(mdEvent ev, DWORD dwEventFlags,

 mdToken tkEventType, mdMethodDef mdAddOn,

 mdMethodDef mdRemoveOn, mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[])

Changes the properties of an existing event. See DefineEvent for more information.

If you supply a value for any argument, it will supersede the value you supplied in
the earlier call to DefineEvent. If you want to leave the original value unchanged,
mark that argument as “to be ignored” – see section 1.5.5 for details.

Metadata API

Page 48

in/out Parameter Description Required?

in ev Event token yes

in dwEventFlags Event flags no

in tkEventType Token for the Event class no

in mdAddOn Method used to subscribe to the event, or nil no

in mdRemoveOn Method used to unsubscribe to the event, or nil no

in mdFire Method used (by a subclass) to fire the event no

in rmdOtherMethods[] Array of tokens for other methods associated with the

event

no

3.7 Specifying Layout Information for a Class

3.7.1 SetClassLayout
HRESULT SetClassLayout (mdTypeDef td, DWORD dwPackSize,

 COR_FIELD_OFFSET rFieldOffsets[], ULONG ulClassSize)

Sets the layout of fields for an existing class.

The original definition of the class, made by a call to DefineTypeDef, marked it as
having one of three layouts: tdAutoLayout, tdLayoutSequential or tdExplicitLayout.
Normally, you would specify tdAutoLayout, and let the runtime choose how best to
lay out the fields for objects of that class; for example, changing their order might
result in faster garbage collection.

However you may want objects of a class laid out in-memory to match how
unmanaged code would have done that; in this case, choose tdLayoutSequential or
tdExplicit layout; and call SetClassLayout to complete the layout information, as
follows:

• tdLayoutSequential – specify the packing size between adjacent fields. Must be
1, 2, 4, 8 or 16 bytes. (A field will be aligned to its natural size, or to the packing
size, whichever results in the smaller offset)

• tdExplicitLayout – specifiy the offsets, at which each field starts. Or specify the
overall size (and optionally, the packing size)

Note that you can use this method to define unions (where multiple fields have the
same offset within the class)

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field on

the class for which sequence or offset information is

specified. Terminate array with mdTokenNil.

no

in ulClassSize Overall size of these class objects, in bytes no

Metadata API

Page 49

The COR_FIELD_OFFSET is a simple struct with two fields: an mdFieldDef to define
the field, and a ULONG to specify the byte offset from the start of the object, at
which this field should start (offsets start at zero).

3.8 Miscellaneous

3.8.1 GetTokenFromSig
HRESULT GetTokenFromSig(PCCOR_SIGNATURE pvSig, ULONG cbSig,

 mdSignature *pmsig)

Stores a signature into the Blob heap, returning a metadata token that can be used
to reference it later. That token represents an index into the StandAloneSig table.
This method creates new entries in metadata, so its name is perhaps misleading –
you might think of it instead as being “DefineStandAloneSig”

in/out Parameter Description Required?

in pvSig Signature to be persisted stored yes

in cbSig Count of bytes in pvSig yes

out pmsig Signature token assigned

3.8.2 GetTokenFromTypeSpec
HRESULT GetTokenFromTypeSpec(PCCOR_SIGNATURE pvSig, ULONG cbSig,

 mdTypeSpec *ptypespec)

Stores a type specification into the Blob heap, returning a metadata token that can
be used to reference it later. That token represents an index into the TypeSpec
table. This method creates new entries in metadata, so its name is perhaps
misleading – you might think of it instead as being “DefineTypeSpec”

in/out Parameter Description Required?

in pvSig Signature being defined yes

in cbSig Count of bytes in pvSig yes

out ptypespec TypeSpec token assigned

3.8.3 DefineUserString
HRESULT DefineUserString(LPCWSTR wzString, ULONG cchString,

 mdString *pstk)

Stores a user string into the UserString heap in metadata, returning a token that can
be used to retrieve it later. This token is unlike any other in metadata – it is not an
index for a row in a metadata table – its lower 3 bytes are the actual byte offset
within the UserString heap at which the string is stored.

Metadata API

Page 50

in/out Parameter Description Required?

in wzString User string to store yes

in cchString Count of (wide) characters in wzString yes

out pstk String token assigned

3.8.4 DeleteToken
HRESULT DeleteToken(mdToken tk)

Deletes the specified token from the current metadata scope. The only sorts of
token you can delete are: TypeDef, MethodDef, FieldDef, Event, Property,
ExportedType and CustomAttribute.

This support is for EditAndContinue and incremental-compilation scenarios – where a
compiler wants to make a small change to the metadata, without re-emitting all of it
again. The information identified by the token is not physically erased (an expensive
operation that would require a token remap). Instead, they are marked ‘deleted’ –
we set the xxRTSpecialName bit in their attributes flag, and append “_Delete” to
their name. For CustomAttribute, their parent is set to nil.

Compilers who use this method take on responsibility for dealing with any
inconsistencies it makes in the metadata (eg live references to these deleted tokens)

In order to use this method, you must first call SetOption, specifying the
MetaDataSetUpdate guid, and setting the MDUpdateIncremental flag. You must then
open reopen the scope in read-write mode.

in/out Parameter Description Required?

in tk Token to delete yes

3.8.5 DefineSecurityAttributeSet
HRESULT DefineSecurityAttributeSet(mdToken tkObj,

 COR_SECATTR rSecAttrs[],

 ULONG cSecAttrs,

 ULONG *pulErrorAttr)

Defines a collection of security permissions, attached to the item whose metadata
token is tkObj.

Metadata API

Page 51

in/out Parameter Description Required?

in tkObj Token to which the security info is attached yes

in rSecAttrs[] Array of COR_SECATTR structs yes

in cSecAttrs Number of elements in rSecAttrs[] yes

out pulErrorAttr If method fails, specifies the index in rSecAttrs[] of element

that caused the problem

yes

tkObj must be an mdtTypeDef, a mdtMethodDef or an mdtAssembly

rSecAttrs[] is an array or COR_SECATTR structs. These, in turn, are defined in
CorHdr.h, as follows:

typedef struct COR_SECATTR {

 mdMemberRef tkCtor; // Ref to constructor of security attribute

 const void *pCustomAttribute; // Blob describing ctor args and field/property values

 ULONG cbCustomAttribute; // Length of the above blob

} COR_SECATTR;

Each element of the array defines a custom attribute blob that describes one
corresponding Security Attribute (see section 11)

3.9 Order of Emission
If you call the methods in the IMetaDataEmit interface in a certain order, then the
metadata engine can store the resulting data in a compact form. If you break these
ordering constraints, then everything still works, but the metadata engine has to
introduce intermediate ‘map’ tables – these take up more space in the stored PE file,
and are slower to query at runtime. If you emit definitions in the following order,
you avoid these intermediate ‘map’ tables --

• Emit global functions and fields first

• If you emit TypeDef-A before TypeDef-B, then emit MethodDefs, FieldDefs,
Properties, and Events of TypeDef-A before those of TypeDef-B

• If you emit MethodDef-A before MethodDef-B, then emit any Parameters for
MethodDef-A before those of MethodDef-B

The reason for these rules is illustrated by the picture below –

TypeDef Table
Field Table

FieldList Column

A

B

Metadata API

Page 52

Each time you call DefineTypeDef, the metadata engine stores the information you
supply into the next row of the TypeDef table. The picture shows a row for Type-A,
and one for Type-B. Similarly, each time you call DefineField, the metadata engine
stores the information you supply into the next row of the Field table. The TypeDef
table includes a column called FieldList that points to the first field for that type.
This picture shows what happens if you define in the order – Type-A, Type-B, Field-
A-1 thru Field-A-4, Field-B-1, Field-B-2. With this ordering, the fields owned by each
Type lie in a contiguous run in the Field table.

The next picture shows what happens if you interleave the definitions –

Here, the order of definition was: Type-A, Type-B, Field-A-1, Field-B-1, Field-A-2,
Field-B-2, Field-A-3, Field-A-4. The metadata engine creates an intermediate
FieldMap table – as far as the TypeDef table is concerned, it looks like all the Fields
for Type-A lie in a contiguous run – but their order in the Field table is not
contiguous.

Global functions and fields are parented by an artificial Type created by the metadata
engine (it’s called <Module> and is always the first row in the TypeDef table) – in all
other respects, for ordering rules, they behave like members of a genuine Type.

Hopefully, this simple picture makes the ordering constraints easy to understand.
Just as you should emit a Type’s Fields so they lie in a contiguous run, the same
holds true for each Type’s Methods, Events and Properties. Similarly, for each
Method, emit its Parameters so they also lie in a contiguous run.

Note that there’s no other ordering constraint omitted by the above rules. In
particular, for our example, there’s no ordering constraint between definition of
Type-A’s fields, and definition of Type-B. To be absolutely clear, the following orders
are all good (we abbreviate Type-A to tA, and Field-A-1 to fA1, etc) –

tA tB fA1 fA2 fA3 fA4 fB1 fB2

tA fA1 tB fA2 fA3 fA4 fB1 fB2

tA fA1 fA2 tB fA3 fA4 fB1 fB2

tA fA1 fA2 fA3 tB fA4 fB1 fB2

tA fA1 fA2 fA3 fA4 tB fB1 fB2

Note that, you can choose to emit definitions interleaved, but then have the
metadata engine remove these intermediate ‘map’ tables before saving the metadata
to disk. This involves moving table rows to make them contiguous – but since these

TypeDef Table Field Table

FieldList Column

A

B

FieldMap Table

Metadata API

Page 53

row numbers, or RIDs, make up the corresponding metadata tokens, this results in a
remapping of tokens already assigned. If you want to do this, you must call
SetHandle (as explained earlier) to register for these token remap ‘events’ – you
must then fix up any affected tokens that you already generated into your MSIL code
stream. (most compilers jump thru any hoops they can to avoid doing this!)

Metadata API

Page 54

4 MetaDataImport
The import interface is used to consume an existing metadata section from a PE file
or other source (eg stand-alone runtime metadata binary or type library). The
design of these interfaces is intended primarily for tools/services that will be
importing type information (eg development tools) or managing deployed
components (eg resolution/activation services). The following groups of methods are
defined:

• Enumerating collections of items in the metadata scope

• Finding a specific item with a specific set of characteristics

• Getting properties of a specified item

• Resolving import references

4.1 Enumerating Collections
To use the EnumXXX methods, you allocate an array to hold the results, then call the
required EnumXXX method. Of course, there might be more entries in the table than
your array can hold. Just keep calling EnumXXX until eventually the count argument
returns zero. Then tidy off by calling the CloseEnum method.

You can determine how many items are in the collection ahead of time by calling the
CountEnum method.

Example:

 const int siz = 5; // size of array

 HCORENUM enr = 0; // enumerator

 mdTypeDef toks[siz]; // array to hold returned tokens

 ULONG count; // count of tokens returned

 HRESULT h;

 h = pImp->EnumTypeDefs(&enr, toks, siz, &count);

 while(count > 0) {

 for(int i = 0; i < count; i++) cout << toks[i] << “ “;

 h = pImp->EnumTypeDefs(&enr, toks, siz, &count);

 }

 pImp->CloseEnum(enr);

In this example, pImp is the IMetaDataImport pointer returned from a previous call
to OpenScope. (We have omitted error handling to keep the example simple)

Note: When enumerating collections of members for a class, EnumMembers returns
only members defined directly on the class: it does not return any members that the
class inherits, even if it provides an implementation for those inherited members. To
enumerate those inherited members, the caller must explicitly walk the inheritance
chain (the rules for which may vary depending upon the language/compiler that
emitted the original metadata).

Metadata API

Page 55

4.1.1 CloseEnum Method
void CloseEnum(HCORENUM hEnum)

Frees the memory previously allocated for the enumeration. Note that the hEnum
argument is that obtained from a previous EnumXXX call (for example,
EnumTypeDefs)

in/out Parameter Description Required?

in hEnum Handle for the enumeration you wish to close yes

4.1.2 CountEnum Method
HRESULT CountEnum(HCORENUM hEnum, ULONG *pulCount);

Returns the number of items in the enumeration. Note that the hEnum argument is
that obtained from a previous EnumXXX call (for example, EnumTypeDefs).

in/out Parameter Description Required?

in hEnum Handle for the enumeration of interest yes

out pulCount Count of items in the enumeration

4.1.3 ResetEnum
HRESULT ResetEnum(HCORENUM hEnum, ULONG ulPos);

Reset the enumeration to the position specified by pulCount. So, if you reset the
enumeration to the value 5, say, then a subsequent call to the corresponding
EnumXXX method will return items, starting at the 5th (where counting starts at item
number zero). Note that the hEnum argument is that obtained from a previous
EnumXXX call (for example, EnumTypeDefs)

in/out Parameter Description Required?

out hEnum Handle for the enumeration of interest yes

in ulPos Item number to reset to yes

4.1.4 IsValidToken
BOOL IsValidToken(mdToken tk)

Returns true if tk is a valid metadata token in the current scope. [The method
checks the token type is one of those in the CorTokenType enumeration in CorHdr.h,
and then that its RID is less than or equal to the current count of those token types]

Metadata API

Page 56

in/out Parameter Description Required?

in tk Metadata token yes

4.1.5 EnumTypeDefs
HRESULT EnumTypeDefs(HCORENUM *phEnum, mdTypeDef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all TypedDefs within the current scope. Note: the collection will contain
Classes, Interfaces, etc, as well as any TypeDefs added via an extensibility
mechanism.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.6 EnumInterfaceImpls
HRESULT EnumInterfaceImpls(HCORENUM *phEnum, mdTypeDef td,

 mdInterfaceImpl rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all interfaces implemented by the specified TypeDef. Tokens will be
returned in the order the interfaces were specified (through DefineTypeDef or
SetTypeDefProps).

[See GetInterfaceImplProps for more detail of how this method works]

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token specifying the TypeDef whose InterfaceImpls are required yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.7 EnumMembers
HRESULT EnumMembers(HCORENUM *phEnum, mdTypeDef cl,

 mdToken rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all members (fields and methods, but not properties or events) defined
by the class specified by cl. This does not include any members inherited by that
class; even in the case where this TypeDef actually implements an inherited method.

Metadata API

Page 57

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose members are required yes

out rTokens[] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

The tokens returned in the rTokens[] array will be of mdMethodDefs or mdFieldDefs

4.1.8 EnumMembersWithName
HRESULT EnumMembersWithName(HCORENUM *phEnum, mdTypeDef cl,

 LPCWSTR wzName, mdToken rTokens[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all members (fields and methods, but not properties or events) defined
by the specified TypeDef, and that also have the specified name. This does not
include any members inherited by the TypeDef; even in the case where this TypeDef
actually implements an inherited method. This method is like calling EnumMembers,
but discarding all tokens except those corresponding to the specified name.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose members are required yes

in wzName Name of members required. no

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

The tokens returned in the rTokens[] array will be mdMethodDefs or mdFieldDefs

4.1.9 EnumMethods
HRESULT EnumMethods(HCORENUM *phEnum, mdTypeDef cl,

 mdMethodDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all methods defined by the specified TypeDef. Tokens are returned in
the same order they were emitted. If you supply a nil token for the cl argument the
method will enumerate the global functions defined for the module as a whole.

Metadata API

Page 58

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl Token specifying the TypeDef whose methods are required no

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.10 EnumMethodsWithName
HRESULT EnumMethodsWithName(HCORENUM *phEnum, mdTypeDef cl,

 LPCWSTR wzName, mdMethodDef rTokens[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all methods defined by the specified TypeDef (cl), and that also have the
specified name (wzName). This method is like calling EnumMethods, but discarding
all tokens except those corresponding to the specified name.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose methods are required yes

in wzName Name of methods required no

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that supplying a nil token for the cl parameter will enumerate only the global
functions with that name defined for the module as a whole.

4.1.11 EnumUnresolvedMethods
HRESULT EnumUnresolvedMethods(HCORENUM *phEnum,

 mdMethodDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all methods in the current scope that have been declared but are not
implemented.

The enumeration excludes all methods defined at modules scope (globals), or those
defined on Interfaces or Abstract classes. Beyond those, for each method marked
miForwardRef, it is included into the “unresolved” enumeration if either:

• mdPinvokeImpl = 0
• miRuntime = 0

Put another way, “unresolved” methods are class methods marked miForwardRef but
which are not implemented in unmanaged code (reached via PInvoke) nor
implemented internally by the Runtime itelf

Metadata API

Page 59

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.12 EnumMethodSemantics
HRESULT EnumMethodSemantics(HCORENUM *phEnum, mdMethodDef mb,

 mdToken rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all semantics for a given method. (See GetMethodSemantics for how a
method’s semantics are derived)

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in md Token for required method yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.13 EnumFields
HRESULT EnumFields(HCORENUM *phEnum, mdTypeDef cl,

 mdFieldDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all fields defined on a specified TypeDef. The tokens are returned in the
same order as originally emitted into metadata. If you specify cl as nil, the method
will enumerate all the global static data members defined in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl Token specifying the TypeDef whose methods are required yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.14 EnumFieldsWithName
HRESULT EnumFieldsWithName(HCORENUM *phEnum, mdTypeDef cl,

Metadata API

Page 60

 LPCWSTR wzName, mdFieldDef rFields[], ULONG cMax,

 ULONG *pcTokens)

Enumerates all fields defined by the specified TypeDef (cl), and that also have the
specified name (wzName).

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose fields are required yes

in wzName Name of field required no

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that supplying a nil token for the cl parameter will enumerate any module-
global functions with the specified name.

4.1.15 EnumParams
HRESULT EnumParams(HCORENUM *phEnum, mdMethodDef md,

 mdParamDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all attributed parameters for the method specified by md. By attributed
parameters, we mean those parameters of a method which have been explicitly
defined via a call to DefineParam

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in md MethodDef for the method whose parameters are required yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that you can find the number of parameters and their types from the signature
returned in GetMethodProps

4.1.16 EnumMethodImpls
HRESULT EnumMethodImpls(HCORENUM *phEnum, mdTypeDef td,

 mdToken rBody[], mdToken rDecl[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all MethodImpls in the current scope for the TypeDef specified by td

Metadata API

Page 61

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td TypeDef for which MethodImpls are requested yes

out rBody [] Array to hold returned tokens for method bodies

out rDecl [] Array to hold returned tokens for method declarations

in cTokens Size of rBody and rDecl arrays yes

out pcTokens Number of tokens actually returned

4.1.17 EnumProperties
HRESULT EnumProperties (HCORENUM *phEnum, mdTypeDef td,

 mdProperty rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all Property tokens for a specified class, interface or valuetype.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token for the type whose properties you want yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.18 EnumEvents
HRESULT EnumEvents (HCORENUM *phEnum, mdTypeDef td, mdEvent rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all Event tokens for a specified type

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token for the type on which the events are defined yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.19 EnumTypeRefs
HRESULT EnumTypeRefs(HCORENUM *phEnum, mdTypeRef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Metadata API

Page 62

Enumerates all TypeRef tokens that are defined in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.20 EnumMemberRefs
HRESULT EnumMemberRefs(HCORENUM *phEnum, mdToken tkParent,

 mdMemberRef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all MemberRef tokens in the current scope for the specified parent.
tkParent may be a TypeRef, MethodDef, TypeDef, ModuleRef or nil; in the latter
case, we return tokens that reference global-fields or global-functions.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in tkParent Token of parent yes

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.21 EnumModuleRefs
HRESULT EnumModuleRefs (HCORENUM *phEnum, mdModuleRef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all module references in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

Metadata API

Page 63

4.1.22 EnumCustomAttributes
HRESULT EnumCustomAttributes (HCORENUM *phEnum, mdToken tk,

 mdToken tkType, mdCustomAttribute rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all custom attributes for a specified owner.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in tkOwner Token for owner. no

in tkType Token for constructor method, or mdTypeRef, or nil no

out rTokens [] Array to hold returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

tkOwner is the token for the owner – that’s to say, the metadata item this custom
attribute is attached to. If you specify tkOwner as nil, we enumerate all custom
attributes in the scope

If you want to enumerate custom attributes, then supply tkType as the
mdMethodDef or mdMemberRef token for its constructor method. tkType is used to
filter the answer: if specified as null, no filtering is done

4.1.23 EnumSignatures
HRESULT EnumSignatures(HCORENUM *phEnum, mdSignature rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all stand-alone signatures defined within the current scope, by looking
at each row of the StandAloneSig table. These signatures were defined by previous
calls to the GetTokenFromSig method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.24 EnumTypeSpecs
HRESULT EnumTypeSpecs(HCORENUM *phEnum, mdTypeSpec rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Metadata API

Page 64

Enumerates all TypeSpecs defined within the current scope, by looking at each row
of the TypeSpec table. These TypeSpecs were previously defined by previous calls to
the GetTokenFromTypeSpec method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.25 EnumUserStrings
HRESULT EnumUserStrings(HCORENUM *phEnum, mdString rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all user strings stored within the current scope, by scanning the entire
UserString heap. These are the strings stored by previous calls to the
DefineUserString method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Size of rTokens [] array yes

out pcTokens Number of tokens actually returned

WARNING: The only scenario in which this method is expected to be used is for a
metadata browser, rather than by a compiler

4.2 Finding a Specific Item in Metadata

4.2.1 FindTypeDefByName
HRESULT FindTypeDefByName(LPCWSTR wzName, mdToken tkEncloser,

 mdTypeDef *ptd)

Finds the type definition (class, interface, value-type) with the given name. If this is
a nested type, supply tkEncloser as the TypeDef or TypeRef token for its
immediately-enclosing type. If this is not a nested type, supply tkEncloser as nil

in/out Parameter Description Required?

in wzName Name of required type yes

in tkEncloser Token for enclosing type, or nil no

out ptd Token for type definition

Metadata API

Page 65

4.2.2 FindMember
HRESULT FindMember(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdToken *pmd)

Finds a specified member (field or method) in the current metadata scope. The
member you want is specified by td (its enclosing class or interface), wzName (its
name) and, optionally, its signature (pvSig, cbSig). If td is specified as mdTokenNil,
then the lookup is done for a global-variable or global-function. Recall that you may
have multiple members with the same name on a class or interface; supply its
signature to find the unique match.

FindMember only finds members that were defined directly on the class or interface;
it does not find inherited members. (FindMember is simply a helper method – it first
calls FindMethod; if that doesn’t find a match, it then calls FindField)

The signature passed in to FindMember must have been generated in the current
scope. That’s because signatures are bound to a particular scope. As discussed
later in this spec, a signature can embed a token that identifies the enclosing Class
or ValueType (the token is an index into the local TypeRef table). In other words,
you cannot build a runtime signature outside the context of the current scope that
can be used as input to FindMember.

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of the required member yes

in pvSig Signature of the required member no

in cbSig Count of bytes in pvSig no

out pmd Token for matching method or field

pmd can be an mdMethodDef or an mdFieldDef

4.2.3 FindMethod
HRESULT FindMethod(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMethodDef *pmd)

Finds a specified method in the current metadata scope. The field you want is
specified by td (its enclosing class or interface), wzName (its name) and optionally,
its signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-function.

See FindMember description for more details.

Metadata API

Page 66

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required method yes

in pvSig Signature of the required method no

in cbSig Count of bytes in pvSig no

out pmd Token for matching method

4.2.4 FindField
HRESULT FindField(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdFieldDef *pmd)

Finds a specified field in the current metadata scope. The field you want is specified
by td (its enclosing class or interface), wzName (its name) and optionally, its
signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-variable.

See FindMember description for more details.

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required field yes

in pvSig Signature of the required field no

in cbSig Count of bytes in pvSig no

out pfd Token for matching field

4.2.5 FindMemberRef
HRESULT FindMemberRef(mdTypeRef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMemberRef *pmr)

Finds a member reference in the current metadata scope. The reference you want is
specified by td (its owner class or interface), wzName (its name) and optionally, its
signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-variable or global-function.

The signature passed in to FindMember must have been generated in the current
scope. See FindMember description for details.

Metadata API

Page 67

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required member reference yes

in pvSig Signature of the required member no

in cbSig Count of bytes in pvSig no

out pmr Token for matching member reference

tr must be one of mdTypdDef, mdTypeRef, mdMethodDef, mdModuleRef or
mdTypeSpec or mdTokenNil.

4.2.6 FindTypeRef
HRESULT FindTypeRef(mdToken tkResScope, LPCWSTR wzName, mdTypeRef *ptr)

Returns information about an existing type reference

in/out Parameter Description Required?

in tkResScope Token for scope in which type is defined no

in wzName Name of required type yes

out ptr TypeRef token returned

tkResScope may be an mdModuleRef, mdAssemblyRef, mdTypeRef token (this is
required to disambiguate, for example, a reference to Type X in Assembly A, from a
reference to Type X in Assembly B). If the target type is nested, specify tkResScope
as the mdTypeRef token for its immediately-enclosing type

4.3 Obtaining Properties of a Specified Object
These methods are specifically designed to return single-valued properties of
metadata items. When the property is a reference to another item, a token for that
item is returned for the property. Any pointer input type can be null to indicate that
the particular value is not being requested. To obtain properties that are essentially
collection objects (e.g., the collection of interfaces that a class implements), see the
earlier section on enumerations.

4.3.1 GetScopeProps
HRESULT GetScopeProps (LPWSTR wzName, ULONG cchName, ULONG *pchName,

 GUID *pmvid)

Gets the properties for the current metadata scope that were set with a previous call
to SetModuleProps.

Metadata API

Page 68

in/out Parameter Description Required?

out wzName Buffer to hold name of current module. no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned

out pmvid Returned module VID

4.3.2 GetModuleFromScope
HRESULT GetModuleFromScope (mdModule *pModule)

Gets the token for the module definition for the current scope.

in/out Parameter Description Required?

out pModule Module token returned

4.3.3 GetTypeDefProps
HRESULT GetTypeDefProps (mdTypeDef td, LPWSTR wzTypeDef,

 ULONG cchTypeDef, ULONG *pchTypeDef,

 DWORD *pdwTypeDefFlags, mdToken *ptkExtends)

Gets the information stored in metadata for a specified type definition.

in/out Parameter Description Required?

in td Token for required type definition yes

out wzTypeDef Name of type. no

in cchTypedef Count of characters allocated in wzTypeDef buffer no

out pchTypedef Actual count of characters returned no

out pdwTypeDefFlags Flags set on type definition. no

out ptdExtends Token for superclass. no

pdwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h.

ptdExtends is an mdTypeDef or mdTypeRef

4.3.4 GetNestedClassProps
HRESULT GetNestedClassProps (mdTypeDef tdNested,

 mdTypeDef *ptdEncloser)

Gets the enclosing class for a specified nested class.

in/out Parameter Description Required?

Metadata API

Page 69

in tdNested Token for required nested class yes

out ptdEncloser Token for the enclosing class yes

4.3.5 GetInterfaceImplProps
HRESULT GetInterfaceImplProps (mdInterfaceImpl iImpl,

 mdTypeDef *pClass, mdToken *ptkIface)

Gets the information stored in metadata for a specified interface implementation.

Each time you call DefineTypeDef or SetTypeDefProps to define a type, you can
specify which interfaces that class implements, if any. For example, suppose a class
has an mdTypeDef token value of 0x02000007. And suppose it implements three
interfaces whose types have tokens 0x02000003 (TypeDef), 0x0100000A (TypeRef)
and 0x0200001C (TypeDef). Conceptually, this information is stored into an
interface implementation table like this:

Row Number Class Token Interface Token

4

5 02000007 02000003

6 02000007 0100000A

7

8 02000007 0200001C

GetInterfaceImplProps will return the information held in the row whose token you
provide in the iImpl argument. (Recall, the token is a 4-byte value; the lower 3
bytes hold the row number, or RID; the upper byte holds the token type – 0x09 for
mdtInterfaceImpl).

[You obtain the value for iImpl by calling the EnumInterfaceImpls method]

in/out Parameter Description Required?

in iImpl Token for the required interface implementation yes

out pClass Token for the class. no

out ptkIface Token for the interface that pClass implements. no

ptkIface will be an mdTypeDef or an mdTypeRef

4.3.6 GetCustomAttributeProps
HRESULT GetCustomAttributeProps (mdCustomAttribute ca,

 mdToken *ptkOwner, mdToken *ptkType,

 void const **ppBlob, ULONG *pcbBlob)

Returns information about a custom attribute.

Metadata API

Page 70

A custom attribute is stored as a blob whose format is understood by the metadata
engine, and by Reflection; essentially a list of argument values to a constructor
method which will create an instance of the custom attribute.

in/out Parameter Description Required?

in ca Token for required custom attribute yes

out ptkOwner Token for owner

out ptkType Token for custom attribute no

out ppBlob Pointer to blob for custom attribute no

out pcbBlob Count of bytes in ppBlob no

ptk is the token for the owner – that’s to say, the metadata item this custom
attribute is attached to. A custom attribute can be attached to any sort of owner,
with the sole exception of an mdCustomAttribute.

If ca is a custom attribute, then ptkType is the mdMethodDef or mdMemberRef token
for its constructor method.

4.3.7 GetCustomAttributeByName
HRESULT GetCustomAttributeByName (mdToken tdOwner, LPCWSTR wzName,

 const void **ppBlob, ULONG *pcbBlob)

Returns the information stored for a custom attribute, where you specify the target
by its owner and name. See GetCustomAttributeProps for more detail.

The name is the name of the attribute class (see Section 3.2.2)

in/out Parameter Description Required?

in tdOwner Token for owner of custom attribute or custom value yes

in wzName Name of custom attribute or custom value yes

out ppBlob Pointer to blob for custom attribute or value yes

out pcbBlob Count of bytes in ppBlob yes

Note that it is quite legal to define multiple custom attributes for the same owner;
they may even have the same name. GetCustomAttributeByName returns only one
of those multiple instances (in fact, the first it encounters, but that behaviour is not
guaranteed). Use the EnumCustomAttributes if you want to find them all.

4.3.8 GetMemberProps
HRESULT GetMemberProps(mdToken md, mdTypeDef *pClass, LPWSTR wzName,

ULONG cchName, ULONG *pchName, DWORD *pdwAttr,

PCCOR_SIGNATURE *ppSig, ULONG *pcbSig, ULONG *pulCodeRVA,

DWORD *pdwImplFlags, DWORD *pdwDefType, void const **ppValue, ULONG

*pcbValue)

Metadata API

Page 71

Gets the information stored in metadata for a specified member definition. This is a
simple helper method: if md is a MethodDef, then we call GetMethodProps; if md is a
FieldDef, then we call GetFieldProps. See these other methods for details.

4.3.9 GetMethodProps
HRESULT GetMethodProps(mdMethodDef md, mdTypeDef *pClass,

 LPWSTR wzName, ULONG cchName, ULONG *pchName,

 DWORD *pdwAttr, PCCOR_SIGNATURE *ppvSig, ULONG *pcbSig,

 ULONG *pulCodeRVA, DWORD *pdwImplFlags)

Retrieves a method definition in the current metadata scope. The method you want
is specified by md (its MethodDef token).

in/out Parameter Description Required?

in md Token of required method yes

out pClass Token for class in which this method is defined. no

out wzName Buffer to hold name of method. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out ppvSig Pointer to signature of the required method. no

out pcbSig Count of bytes in ppvSig no

out pulCodeRVA RVA for code. no

out pdwImpleFlags Implementation flags. no

pdwAttr is from the CorMethodAttr enum in CorHdr.h.

4.3.10 GetFieldProps
HRESULT GetFieldProps(mdFieldDef fd, mdTypeDef *pClass, LPWSTR wzName,

ULONG cchMember, ULONG *pchMember, DWORD *pdwAttr, PCCOR_SIGNATURE

*ppvSig, ULONG *pcbSig, DWORD *pdwDefType, void const **ppValue,

ULONG *pcbValue)
Retrieves the information stored in metadata for a specified field.

in/out Parameter Description Required?

Metadata API

Page 72

in Fd Token of required field yes

out pClass Token for class on on which the field is defined. no

in wzName Buffer to hold name of property. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwAttr Attribute flags. no

out pdwDefType ELEMENT_TYPE_* for the constant value. no

out ppValue Pointer to the parameter default value. no

out pcbValue Count of bytes in ppValue no

pdwAttr is drawn from the CorFieldAttr enum in CorHdr.h

4.3.11 GetParamProps
HRESULT GetParamProps (mdParamDef pd, mdMethodDef pmd,

 ULONG *pulSequence, LPWSTR wzName, ULONG cchName,

 ULONG *pchName, DWORD *pdwAttr, DWORD *pdwDefType,

 void const **ppValue, ULONG *pcbValue)

Retrieves the information stored in metadata for a specified parameter on a method,
or global-function.

in/out Parameter Description Required?

in pd Token of required parameter yes

in pmd Token for method on which the parameter is defined no

out pulSequence Ordinal value of parameter in method signature; 0 indicates the

return value

no

out wzName Buffer to hold name of parameter no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwAttr Attribute flags no

out pdwDefType ELEMENT_TYPE_* for the constant value no

out ppValue Pointer to the parameter default value no

out pcbValue Count of bytes in ppValue no

pdwAttr is drawn from the CorParamAttr enum in CorHdr.h

4.3.12 GetParamForMethodIndex
HRESULT GetParamForMethodIndex(mdMethodDef md, ULONG ulParamSeq,

 mdParamDef *ppd)

Metadata API

Page 73

Returns the definition of parameter number ulParamSeq for the method (or global-
function) whose token is md. A value of 0 for ulParamSeq denotes the return value;
parameters are numbered starting at 1.

in/out Parameter Description Required?

in md Token of target method yes

in ulParamSeq Ordinal value of parameter in method signature; 0 indicates the

return value

no

out ppd Pointer to the parameter defintion

4.3.13 GetPinvokeMap
HRESULT GetPinvokeMap(mdToken tk, DWORD *pdwMappingFlags,

 LPCWSTR wzName, ULONG cchName,

 ULONG *pchName, mdModuleRef *pmrImportDLL)

Returns the PInvoke information stored for a given method. (PInvoke is a Runtime
service that supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token for the method required yes

out pdwMappingFlags Flags stored to describe mapping yes

out wzName Buffer to hold name of method in unmanaged DLL no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned no

out pmdImportDLL mdModuleRef token for target unmanaged DLL no

tk must be a MethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h

4.3.14 GetFieldMarshal
HRESULT GetFieldMarshal(mdToken tk, PCCOR_SIGNATURE *ppNativeType,

 ULONG *pcbNativeType)

Returns the marshaling information for a field, method return, or method parameter
(See SetFieldMarshal for details)

in/out Parameter Description Required?

in tk Token for target data item yes

out ppNativeType Pointer to the native type signature

out pcbNativeType Actual count of bytes in ppNativeType

tk is an mdFieldDef or mdParamDef

Metadata API

Page 74

4.3.15 GetRVA
HRESULT GetRVA(mdToken tk, ULONG *pulCodeRVA, DWORD *pdwImplFlags)

Returns the code RVA and implementation flags for a given member.

in/out Parameter Description Required?

in tk Token for the required member yes

out pulRVA RVA for required member no

out pdwImplFlags Implementation flags for required member no

tk must be one of mdMethodDef mdFieldDef. In the latter case, the field must be a
global-variable

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h (not relevant if
tk is an mdFieldDef)

4.3.16 GetTypeRefProps
HRESULT GetTypeRefProps(mdTypeRef tr, mdToken *ptkResScope,

 LPWSTR wzName, ULONG cchName, ULONG *pchName)

Retrieve information for a type reference in the current metadata scope

in/out Parameter Description Required?

in tr Token of required method reference yes

out ptkResScope Token for resolution scope – a ModuleRef or AssemblyRef no

in wzName Buffer to hold name of type no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

4.3.17 GetMemberRefProps
HRESULT GetMemberRefProps(mdMemberRef mr, mdToken *ptk,

 LPWSTR wzMember, ULONG cchMember, ULONG *pchMember,

 PCCOR_SIGNATURE *ppSig, ULONG *pcbSig)

Returns the information stored in metadata for a specified member reference.

in/out Parameter Description Required?

Metadata API

Page 75

in mr Token for required member reference yes

out ptk Token for class or interface on which member is defined. no

out wzName Buffer to hold name of member. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied into wzName no

out ppSig Pointer to signature blob no

out pcbSig Count of bytes in ppSig no

4.3.18 GetModuleRefProps
HRESULT GetModuleRefProps(mdModuleRef mr, LPWSTR wzName,

 ULONG cchName, ULONG *pchName)

Returns the information stored in metadata for a specified module reference.

in/out Parameter Description Required?

in mr Token for required module reference yes

out wzName Buffer to hold name no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned no

4.3.19 GetPropertyProps
HRESULT GetPropertyProps(mdProperty prop, mdTypeDef *pClass,

 LPWSTR wzName, ULONG cchName, ULONG *pchName,

 DWORD *pdwFlags, PCCOR_SIGNATURE *ppSig, ULONG *pbSig,

 DWORD *pdwDefType, const void **ppValue,

 ULONG *pcbValue, mdMethodDef *pmdSetter,

 mdMethodDef *pmdGetter, mdMethodDef rmdOtherMethods[],

 ULONG cMax, ULONG *pcOtherMethods, mdFieldDef *pmdBackingField)

Returns information stored in metadata for a specified property.

Metadata API

Page 76

in/out Parameter Description Required?

in prop Token of required property yes

out pClass Token for type on which the property is defined no

out wzName Buffer to hold name of property no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwFlags Property flags no

out ppSig Pointer to property signature no

out pbSig Count of bytes in ppSig no

out pdwDefType ELEMENT_TYPE_* for the constant value no

out ppValue Pointer to the property default value no

out pcbValue Count of bytes in ppValue no

out pmdSetter Token for setter method no

out pmdGetter Token for getter method no

out rmdOtherMethods[] Array to hold tokens for other property methods no

in cMax Count of elements in the rmdOtherMethods array no

out pcOtherMethods Count of elements filled in mdOtherMethods array no

out pmdBackingFiled Token for property’s backing field no

pdwFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

Note that only cMax other methods can be returned by this method. If the property
has more methods defined than you provide array space to hold, they are skipped
without warning.

4.3.20 GetEventProps
HRESULT GetEventProps(mdEvent ev, mdTypeDef *pClass, LPCWSTR wzEvent,

 ULONG cchEvent, ULONG *pchEvent, DWORD *pdwEventFlags,

 mdToken *ptkEventType, mdMethodDef *pmdAddOn,

 mdMethodDef *pmdRemoveOn, mdMethodDef *pmdFire,

 mdMethodDef rOtherMethods[], ULONG cOtherMethods,

 ULONG *pcOtherMethods)

Returns the information previously defined for a given event. See DefineEvent for
more information

Metadata API

Page 77

in/out Parameter Description Required?

in ev Token of required event yes

out pClass Class or interface on which event is defined. no

out wzEvent Buffer to hold name of event. no

in cchEvent Length of wzEvent in (wide) characters no

out pchEvent Number of characters returned into wzEvent. no

out pdwEventFlags Event flags. no

out ptkEventType Token for the event class no

out pmdAddOn Method used to subscribe to the event no

out pmdRemoveOn Method used to unsubscribe to the event no

out pmdFire Method used (by a subclass) to fire the event no

out rOtherMethods[] Array to hold tokens for the event’s other methods no

in cOtherMethods Size of rOtherMethods array no

out pcOtherMethods Number of other methods actually returned no

4.3.21 GetMethodSemantics
HRESULT GetMethodSemantics(mdMethodDef md, mdToken tkProp,

 DWORD *pdwSemantics)

Returns the semantic flags for a given property. Note that there is no Define method
that creates those flags – they are derived from the DefineProperty method – for
example, if a method was specified as a Getter, then that method’s semantic flags
would have the msGetter bit set.

in/out Parameter Description Required?

in md Token for required method yes

in tkProp Token for required property yes

out pdwSemantics Array to hold the method semantics DWORD

pdwSemantics is drawn from the CorMethodSemanticsAttr in CorHdr.h

4.3.22 GetClassLayout
HRESULT GetClassLayout(mdTypeDef td, DWORD *pdwPackSize,

 COR_FIELD_OFFSET rFieldOffsets[], ULONG cMax,

 ULONG *pcFieldOffsets, ULONG *pulClassSize)

Returns the layout of fields for a class, defined by an earlier call to SetClassLayout.

Metadata API

Page 78

in/out Parameter Description Required?

in td Token for required class yes

out pdwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

out rOffsets [] Array to hold the offsets of class fields no

out cOffsets Size of rOffsets [] array no

out pcOffsets Number of offsets actually returned no

out pulClassSize Overall size of the class object, in bytes no

See SetClassLayout for more information.

4.3.23 GetSigFromToken
HRESULT GetSigFromToken(mdSignature tkSig, PCCOR_SIGNATURE *ppSig,

 ULONG *pcbSig)

Returns the signature for a given standalone-signature token (the tkSig parameter
effectively indexes a row in the StandAloneSig table)

in/out Parameter Description Required?

in tkSig Token for the required signature yes

out ppSig Pointer to required signature blob

out pchSig Count of bytes in the signature blob pointed to by ppSig

4.3.24 GetTypeSpecFromToken
HRESULT GetTypeSpecFromToken(mdTypeSpec typespec,

 PCCOR_SIGNATURE *ppSig, ULONG *pcbSig)

Returns the TypeSpec whose token is typespec (the typespec parameter effectively
indexes a row in the TypeSpec table)

in/out Parameter Description Required?

in typespec Token for the required TypeSpec yes

out ppSig Pointer to required TypeSpec

out pchSig Count of bytes in the TypeSpec pointed to by ppSig

4.3.25 GetUserString
HRESULT GetUserString(mdString stk, LPWSTR wzString,

 ULONG cchString, ULONG *pchString)

Metadata API

Page 79

Returns the user string, previously stored into metadata (by the DefineUserString
method), whose token is stk.

in/out Parameter Description Required?

in stk Token for the required string yes

out wzString Buffer to hold the retrieved string no

in cchString Length of wzString buffer in (wide) characters no

out pchString Number of characters returned into wzString no

4.3.26 GetNameFromToken
HRESULT GetNameFromToken(mdToken tk, MDUTF8CSTR *pwzName)

Returns a pointer, within metadata structures, to the name string for token tk. tk
must be one of mdModule, mdTypeRef, mdTypeDef, mdFieldDef, mdMethodDef,
mdParamDef, mdMemberRef, mdEvent, mdProperty, mdModuleRef, else the method
will return failure

in/out Parameter Description Required?

in tk Token to be inspected yes

out pwzName Pointer to the token’s name, in UTF8 format

4.3.27 ResolveTypeRef
HRESULT ResolveTypeRef(mdTypeRef tr, REFIID riid, IUnknown **ppIScope,

 mdTypeDef *ptd)

Resolves a given TypeRef token, by looking for its definition in other modules. If
found, it returns an interface to that module scope in ppIScope, as well as the type
definition token, in that module, for the requested type.

in/out Parameter Description Required?

in tr Token for the type reference of interest yes

in riid Interface to return on the target scope yes

out ppIScope Returned interface on target scope

out ptd Token for a TypeDef

riid specifies the interface you would like returned for the module that holds the
definition of the referenced type. Typically this would be IID_IMetaDataImport; see
OpenScope for more information

Note: if the TypeRef token to be resolved has a resolution scope of AssemblyRef,
then the ResolveTypeRef method looks for a match only in those metadata scopes
that have already been opened (via calls to IMetadataDispenserEx::OpenScope).
This is because it has no way to determine, from only the AssemblyRef, exactly
where on disk, or in the Global Assembly Cache, that assembly is stored.

Metadata API

Page 80

5 IMetaDataTables
There is a further interface used to query metadata – it is called IMetaDataTables,
and is defined in the Cor.h header file. It provides very low-level read-access to
metadata information – at the level of the physical tables. The layout of these tables
is not guaranteed stable, and may change.

In order to see an example of how to use this API, see the sample code for the
“MetaInfo” tool which ships with the .NET SDK. In particular, those code paths
corresponding to the “-raw” and “-heaps” command line switches to that tool.

Metadata API

Page 81

6 MethodImpls

6.1 Intro
A MethodImpl is a record in MetaData that allows a class to implement two or more
inherited methods, whose names and signatures match. For example, class C
implements interfaces I and J – both interfaces include a method int Foo (int). How
does C provide two implementations, one for I::Foo and one for J::Foo? [The only
solution today is for the programmer to avoid the name collision by changing one of
I::Foo or J::Foo]

6.2 Details
MethodImpls record a 3-way association among tokens. The three items associated
together are:

• class being defined
• method whose body we want to use for the implementation
• method whose MethodTable slot we want to use

For example (all instances of the F function are assumed virtual) --

Interface I // DefineTypeDef returns tdI

 int F (int) // DefineMethod returns mdFinI

Interface J // DefineTypeDef returns tdJ

 int F (int) // DefineMethod returns mdFinJ

class C implements I, J // DefineTypeDef returns tdC

 int F(int) rename I.F select I {...} // DefineMethod returns mdI.F

 // DefineMethodImpl (tdC, mdI.F, mrFinI)

 int F(int) rename J.F select J {...} // DefineMethod returns mdJ.F

 // DefineMethodImpl (tdC, mdJ.F, mrFinJ)

MethodImpls are stored in a 3-column table – TypeDef, MethodDef/Ref of body,
MethodDef/Ref of the ‘owner’ of the MethodTable slot. In this example, that second
column is a MethodDef that refers to the just-defined method body. So at this stage,
it seems we’re only really using two columns of the MethodImpl table . . .

However, instead of a class providing its own code, it may choose to reuse the code
body already supplied, for this method, by a super class. So, let’s add a base class
B, and change C like this:

Metadata API

Page 82

class B // DefineTypeDef returns tdB

 int F (int) {...} // DefineMethod returns mdFinB

class C extends B implements I, J { // DefineTypeDef returns tdC

 int F(int) rename I.F select I {...} // DefineMethod returns mdI.F

 // DefineMethodImpl (tdC, mdI.F, mrFinI)

 int F(int) rename J.F select J uses B //

 // DefineMethodImpl (tdC, mrFinB, mrFinJ)

We don’t require a MethodDef for the last method, since we are providing no code.
Instead, we hijack the code for method F provided by class B.

The prefix mr represents a MethodRef token. In the case where I, J, B and C all lie
in the same module, then MethodRefs such as mrFinB would be changed to the
corresponding MethodDef mdFinB through Ref-to-Def folding (or the compiler might
do so itself)

Note that the body referenced in a MethodImpl has two constraints:

• It must be a virtual function. It cannot be for a non-virtual

• It must be implemented by a parent of the current class. You cannot hijack
arbitrary virtual functions from classes that are unrelated to the current class
– even when their name and signature matches what’s required.

6.3 ReNaming Recommendations
The I.F, J.F, etc names in the above examples were invented for illustration. These
mangled names might be provided by the user (if the compiler allows), or created
automatically by the compiler. Mangling is required only to avoid name collisions
within the class. With this proposal, the Runtime does not depend in any way upon
unmangling to work out what to do – that information is all captured unambiguously
in the MetaData tables.

All that said, we recommend that all compilers that target the Runtime adopt the
same name mangling scheme. This will make life easier for tools such as browsers,
debuggers, profilers, etc.

The suggested scheme is this: that the method Foo within class C which is going to
use the MethodTable slot provided by method Foo in interface IFace be called
IFace.Foo. Similarly, if the slot were provided by method Foo in base class BClass,
that the method be called BClass.Foo

The prefix should be the fully-qualified Interface or Class name.

We also recommend that compilers mark each MethodDef that has a MethodImpl
with mdSpecialName. Doing so alerts browsers that the method has been renamed,
or mangled, away from the method it implements.

6.4 Notes
• The third column in a MethodImpl must be supplied as non-nil. (otherwise,

there’s a possible loophole that allows a compiler to use MethodImpls to
rename an inherited method within a sub-class)

Metadata API

Page 83

• MethodImpl tokens are not required
• We recommend that compilers use MethodImpls only in the case where there

is ambiguity. So, for example, if interface J had no method int F(int), then
there is no need to emit a MethodImpl. Put another way, there is no
requirement to emit a MethodImpl for every interface method that a class
implements – although this will work, it is discouraged to avoid the
consequent bloat in MetaData.

• A given method may have zero, one or more associated MethodImpls.
• A given class may have have multiple methods, all with the same name and

signature, for which it can provide code – via the class derivation tree
(single), via the interface tree (multiple), or defined within this class itself
(single). As before, wherever there is ambiguity over which vtable slot is to
be matched with a given implemenation, compilers should emit a
MethodImpl. This can even be required for the slot inherited from a base
class, B say, if class C itself defines a virtual int F(int) asking for a “new slot”

• With this design, there is no benefit in allocating a bit in the MethodImpl flags
field of each MethodDef as a hint bit – if set, then the method has an
associated MethodImpl?

Metadata API

Page 84

7 NestedTypes

7.1 Introduction
This appendix summarizes support for nested types. It explains both how they are
stored and retrieved from metadata, and the semantics given them by the runtime.
We include examples, and explanation/exploration of what is provided and what not.

7.2 Definition
A Type is any of: Class, ValueType, Interface or Delegate. A NestedType is a Type
whose definition, in the source language, is lexically enclosed within the definition of
anotherTtype. We refer to these two by the names, “nested” Type and “encloser”
Type; sometimes as “nestee” and “nester”, respectively.

The support provided by the Runtime for nested Types is quite minimal. In essence,
metadata provides an extra association for a NestedType – the TypeDef token of its
encloser. And, at runtime, the Common Language Runtime (CLR) provides access
from nestee methods to members defined within its encloser.

7.3 Supported Features
Here is the support provided for NestedTypes, both in metadata, and at runtime, by
the CLR:

1. We support NestedTypes, not inner types. The distinction is that NestedTypes
are only lexically nested; there is no access, by a sort of this or super pointer, to
the enclosing type

2. The layout of an enclosing type is based only on its fields – it is totally unaffected
by any Types that it nests. If the language wants the enclosing Type to be, for
example, a struct containing a nested struct, then the compiler must emit a field
definition into the enclosing type to hold that reference. Note that, whilst
metadata preserves the order in which fields are defined, it does not preserve the
order for multiple NestedTypes within an encloser

3. The relationship between an enclosing type and a NestedType, with respect to
visibility and member access, is the same as that between a Type and its
method/field members:

o A NestedType does not have visibility independent of its enclosing Type. That
is:
[non-exported] class EnclosingClass // not visible outside of the assembly
{
 public void Foo() {...} // visible only to anyone that can see
 // EnclosingClass ... that is, only within
 // the assembly
 public class NestedClass {...} // ditto
}

• An enclosing type may control access to its nested type, by marking a
nested type with any of the member access rules: private, family, assembly,
assemblyORfamily, assemblyANDfamily, public. The runtime enforces these
member access rules

Metadata API

Page 85

4. A NestedType has access to all members of its enclosing type, without restriction.
In this regard, it behaves just like a part of the implementation of the enclosing
type. That is:

[exported] class EnclosingClass {
 family static int i;
 private static int j;
 public class NestedClass {
 void bar () {
 j = 1; // OK
 EnclosingClass.j = 1; // OK
 i = 1; // OK
 EnclosingClass.i = 1; // OK
 }
 }
}

5. NestedTypes may be nested arbitrarily deep

6. A NestedType may be subtyped, and may subtype another Type, entirely
independently of its nesting hierarchy. For example:

class A {
 family static int i;
 class X {
 X() {
 i = 1; // OK – sets A.i
 A.i = 1; // OK – same effect as previous line
 }
 }
}
class Y : A.X {
 void foo() {
 i = 1; // won’t compiler - unknown identifier
 A.i = 1; // won’t compile - i not accessible - Y not in the scope of A,
 // even though Y inherits from A.X
 }
}
class B : A {
 class Z : X {
 void bar () {
 i = 1; // OK – sets the i field (in base class A)
 A.i = 1; // OK – allowed since Z, via inheritance from X, is within
 // the scope of A
 B.i = 1; // OK – since B derives from A
 }
 }
}

Note that in the bar method, all 3 assignments update the same field (ie the same
cell in memory). As another example, a NestedType could inherit from its enclosing
type:

public class EnclosingClass {
 public static int i;
 private static int j;
 private virtual void Foo() { }
 public class NestedClass : EnclosingClass {
 private override void Foo() { }
 void bar () {
 j = 1; // OK
 this.j = 1; // OK
 i = 1; // OK
 this.i = 1; // OK
 }
 }
}

As the above examples illustrate, resolving references through the inheritance chain
and through the nesting hierarchy can get complex. The CLR will give precedence to

Metadata API

Page 86

the inheritance chain; if there is no resolution within that chain, then it will traverse
the nesting hierarchy.

7. When emitting metadata:

o A NestedType will be emitted using DefineNestedType:

o Mark its visibility nested (see revised type visibility rules, below).

o Like any member within a Type, its name must be unique within that
Type. Because the Type is a NestedType, it does not conflict with any
module-level Type of the same name. There is no need for compilers to
mangle the name of the nestee in order to make it unique at module-
level. The runtime loader will take account of the Type’s nested status
when it comes to find the right Type to load.

o The definition of a NestedType must occur in the same module as that of
its encloser

o In the current implementation, metadata actually preserves the order of
emitted TypeDefs; however, tools should not rely that metadata
enumerations will return NestedTypes before, or after, their enclosers

o The TypeDef for a NestedType has one extra item of metadata, compared
with a regular TypeDef. This additional item is the token for its enclosing
type. This is persisted internally in a two-column look-aside table, holding
the Typedefs of nestee and encloser. The Runtime uses this to determine
whether the enclosing Type is, or is not, visible outside of the assembly. Note
that because we losslessly capture the nesting hierarchy in metadata, there is
no parsing of mangled type names required to “guess” the nesting structure

o References to a NestedType will be emitted as TypeRefs. Upon resolution, the
Runtime will observe that the visibility is nested and thus will apply member
access rules

8. While importing a metadata file, suppose a language or tool, that is blind to
NestedTypes, stumbles upon the definition of a NestedType. Firstly, it must
recognize the Type as nested because it has one of the possible tdNestedXXX bits
set in its TypeDef flags. [Every language or tool must recognize all bits in the
CorTypeAttr enum – including tdNestedXXX. It need not implement the
semantics those bits demand; it can simply stay away; but it must know enough
to make that choice] Having found a NestedType, the compiler/tool has two
choices:

o Don't expose that nested type

o Expose that nested type as a module-level type, iff its encloser were visible
and the member access rule on the nested type is NestedPublic

9. You can freely nest all Types – Classes, ValueTypes, Interfaces and Delegates.
[The common case will be a Class which nests an Interface, but Runtime supports
any permutations]

7.4 Visibility, Subclassing, and Member Access
Types carry visibility rules, one of:

• public -- meaning it is visible to any type in the same assembly, and may
be exported outside of the assembly

Metadata API

Page 87

• non-public -- meaning it is visible to any type in the same assembly and
may NOT be exported outside of the assembly

• nested -- meaning it does not have visibility independent of its enclosing
type; note that languages that do not support NestedTypes will either
need to simply not expose these Types during import, or will need to test
to make sure that member access rule on such a type is 'public' and the
enclosing Type is visible before exposing the Type

Types carry subclassing rules, one of:

• sealed -- meaning that it may not be subclassed

• non-sealed -- meaning that any class that has visibility to the Type (see
above) may subclass it

If a Type author wants to restrict subclassing to “this assembly” and yet make the
Type available more widely, he could declare a non-sealed class with non-public
visibility and a derived sealed Type that’s visible to the world (public).

Note: A Class may also be abstract, in which case it cannot be directly instantiated
and must be subclassed with full implementations provided for all of its members.
As such, an abstract Class cannot be sealed

Types may specify access rules for their members, one of:

• private -- meaning that only this declaring Type may access the member

• family -- meaning that only a subtype of this Type may access the member

• assembly -- meaning that any Type in the same assembly as this Type may
access the member

• familyANDassembly -- meaning that only subtypes in the same assembly as
this Type may access the member

• familyORassembly -- meaning that any Type in the same assembly as this
Type may access the member, as well as any subtype of the Type

• public -- meaning that any Tlass that has visibility to this Type may access
the member

Any subtype that has access to a member may override the implementation for the
member, if virtual, or may hide the member, if non-virtual.

7.5 Naming
Within a module, all Types must of course have a unique name. And within a Type,
all NestedTypes must of course have a unique name. Note that metadata does not
require that the names of NestedTypes be unique within the module.

Let’s recap on an earlier example to clarify the problem:

class A { => DefineTypeDef (“A”) returns tokA
 class B { => DefineNestedType (“B”, tdNestedPublic, tokA) returns tokB
 class C { => DefineNestedType (“C”, tdNestedFamily, tokB) returns tokC
 }
 }
}

The problem comes in creating a TypeRef. For example, what TypeRef’s do you emit
in response to a source statement like:

 A.B.C.foo (42)

Metadata API

Page 88

The answer is, that the compiler should emit one MemberRef, for foo, and 3
TypeRefs, for C, B and A. The resolution scope for each TypeRef is the token for its
encloser. The resolution scope for A is the assembly or module where it is defined.
Here’s the DefineTypeRefByName prototype, as a reminder:

DefineTypeRefByName (mdToken tkResolutionScope, LPCWSTR szNamespace,

 LPCWSTR szType, mdTypeRef *ptr)

In order to resolve this reference, walk ‘up the tree’ towards the root. Since this is
driven by token, rather than by name, we find a unique path to the root. (If done by
name, we could start with 10 “foo”s. We would end up with one unique path to root,
but the interim tracking cost would be high)

This scheme works because NestedTypes must be defined within the same module as
their enclosing type – never by a TypeRef.

[This proposed scheme replaces the current de facto practice where the compile
invents a mangled name of ABC or similar. With this new proposal, we don’t
mangle names. And we circumvent the view that a TypeRef for ABC refers to a
global class with a name of ABC]

7.6 Naked Instances
A language may choose, at its discretion, to allow a user to create an instance of a
NestedType, without any encloser instance – in our running example, an instance of
B, without any instance of A. So:

public static void main(String[] args) {
 A.B b = new A.B(); // create a ‘naked’ B object
 b.bi = 9; // works fine
}

There is no instance of A to enclose B. Again, the Runtime has no qualms about any
code that creates naked instances of a NestedType. So long as the language allows
the user to name them, and therefore identify their TypeDef token, Runtime is
content.

7.7 C++ “Member Classes”
The methods within a C++ member (ie nested) class have no special access to the
members of an enclosing class. So, in the following example declaration,

class A {
 private: static int i;
 class B {
 void m();
 }
}

method m cannot reference the private field i of its enclosing class. However, in the
definition of Runtime NestedTypes, it is clear that the Runtime would allow such an
access to proceed – it would pass verification and run. Does this represent a
problem?

The answer is no. The C++ compiler can use the support provided by Runtime for
NestedTypes; it can deny any attempted access to field i by method m at compile
time, and so preserve the semantics of the language. If another language imports
that module’s metadata there is again no problem, since it cannot emit code that
runs within the nested lexical scope of class A. [It can of course emit code that

Metadata API

Page 89

attempts to access field i from outside of class A, but the Runtime would correctly fail
that access since the field is marked private]

7.8 C++ “Friends”
Friends will not be supported in first release of the Runtime. We had earlier
proposed to introduce a 'friends' mechanism, whereby a TypeDef could carry an
explicit set of TypeDef/Ref tokens that are its Friends. Those friends would be
allowed to have access to all of the members of the declaring type. This had been
introduced in lieu of NestedTypes, in order to support some of the nested type
semantics; however, with the above proposal to support NestedTypes, we will not
provide direct support for “friends”. But languages that have a notion of 'friend' may
still carry such information as CustomAttributes in metadata.

7.9 Example - Simple
Here is an example, of a nested class definition, using SMC-like syntax:

public class A { // DefineTypeDef(“A”, tdPublic) => tdA
 public static int asi; // DefineField(“asi”, fdPublic|fdStatic, sig) => fdasi
 public int aii; // DefineField(“aii”, fdPublic, sig) => fdaii
 public class B { // DefineNestedType(“B”, tdNestedPublic, tdA) => tdB
 public static int bsi; // DefineField(“bsi”, fdPublic|fdStatic, sig) => fdbsi
 public int bii; // DefineField(“bi, fdPublic, sig) => fdbi
 }
}

In compiling this fragment, the compiler will tell metadata about two classes. One
class is called A and has visibility public -- that’s to say, it can be seen outside of its
assembly. To convey this info, the compiler calls DefineTypeDef, passing the name
A, and a flags value of tdPublic (it can pass other goop too, but I’m only talking
about those arguments that affect the real picture). This call returns a TypeDef
token for A; let’s call it tdA. Class A has one static field, asi, of type int. The
compiler calls DefineField, passing the name asi, a flags value of fdPublic|fdStatic,
and a signature of ELEMENT_TYPE_I4. This call returns a FieldDef token, which we’ll
call fdasi. Class A also has one instance field, aii, of type int. The compiler calls
DefineField, passing the name aii, a flags value of fdPublic, and a signature of
ELEMENT_TYPE_I4. This call returns a FieldDef token, which we’ll call fdaii.

The other class is called B and has visibility nestedPublic. The compiler calls
DefineNestedType, passing the name B, a flags value of tdNestedPublic, and an
encloser of tdA. This call returns a TypeDef token for B; let’s call it tdB. Class B has
one static field, bsi, of type int. The compiler calls DefineField, passing the name bsi,
a flags value of fdPublic|fdStatic, and a signature of ELEMENT_TYPE_I4. This call
returns a FieldDef token, which we’ll call fdbsi. Class B also has one instance field,
bii, of type int. The compiler calls DefineField, passing the name bii, a flags value of
fdPublic, and a signature of ELEMENT_TYPE_I4. This call returns a FieldDef token,
which we’ll call fdbii.

From this point forwards in time, metadata recognizes class B as nested solely
because its flags value is one of the tdNestedXXX bunch – that’s to say, one of
tdNestedPublic, tdNestedPrivate, tdNestedFamily, tdNestedAssembly,
tdNestedFamANDAssem or tdNestedFamORAssem.

Note that, as far as metadata is concerned, the only thing different about class B
compared with class A, is that it is marked as “nested”, and therefore has an

Metadata API

Page 90

associated encloser class (defined via tdA). Conversely, class A is not nested – its
flags value is simply tdPublic – and it therefore has no associaated encloser.

Note too that, as explained above, an instance of class A (ie an A object) has only
one field, which we called aii. In particular, there is no field containing a reference to
a B object; nor yet space allocated within the body of A to hold a B object. So, if we
attempt to compile the following code fragment, it will fail, as noted in the
comments:

public static void main(String[] args) {
 A a = new A(); // create an A object
 a.aii = 42; // works fine
 a.bii = 9; // doesn’t work - no such field
 a.B.bii = 9; // doesn’t work - no such field
}

Let’s go on and now create an instance of the nestee and see how nester and nestee
relate:

public static void main(String[] args) {
 A a = new A(); // create an A object
 A.B b = new A.B(); // create a B object
 A.asi = 1; //
 a.aii = 2; //
 A.B.bsi = 3; //
 b.bsi = 4; // reach static field via object
 b.bii = 4; //
}

So far there is nothing at all surprising – the user of course has to specify he wants
to create that nested class B – saying B on its own doesn’t work since there is no
TypeDef for anything called B (just a NestedTypeDef). Each language may invent its
own syntax for how to ‘reach’ B – the example has chosen the ‘obvious’ one of A.B.
But apart from this naming wrinkle, everything would work the same if, instead of
the nested B, we had been creating and operating upon a class C, defined at top
level.

Where the behaviour of nested types does differ is that they lie within the lexical
scope of their encloser, and so have unbridled access to all fields, properties and
methods of that encloser – even if those fields, properties and methods are marked
private. In this respect, the nested type is on a par with other methods and
properties defined within the encloser. Here is an example that illustrates this:

Metadata API

Page 91

public class Foo {
 public class A {
 private static int asi = 1;
 private int aii = 2;
 public static void ShowAsi() {Console.WriteLine("A.asi = " + A.asi);}
 public void ShowAii() {Console.WriteLine(" aii = " + aii);}

 public class B {
 private static int bsi = 3;
 private int bii = 4;
 public static void ShowBsi() {Console.WriteLine("B.bsi = " + B.bsi);}
 public void ShowBii() {Console.WriteLine(" bii = " + bii);}
 public static void bsm() {
 asi = 10; // same as: A.asi = 10;
 bsi = 11; // same as: B.bsi = 11;
 }
 public void bim(A x) {
 asi = 13; // same as: A.asi = 13;
 bsi = 14; // same as: B.bsi = 14;
 bii = 15;
 x.asi = 16;
 x.aii = 17;
 }
 }
 }

 public static void main (String[] args) {
 A a = new A();
 A.B b = new A.B();
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 A.B.bsm(); Console.WriteLine(">>>>>>>call A.B.bsm");
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 b.bim(a); Console.WriteLine(">>>>>>>call b.bim");
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 }
}

This program shows how, from within the static method A.B.bsm, we can update the
private static field of our encloser class, A.asi. Similarly, from within the instance
method b.bim, we can update the private instance field aii of any A object that we
are passed as an argument.

Note that the visibility of a nested class affects whether it can be exported outside of
the assembly in which it is defined. However, that visibility is qualified by that of its
encloser. So, if the nested class has public visibility, but its encloser has non-public
visibility, the nested class cannot be exported. This is a simple consequence of the
fact their is no way to actually actually name the nested class from outside the
assembly.

7.10 Example – Less Simple
Our simple example pointed out that the Runtime does not include any field in an
encloser object, A, that references an object of its nested class, B. However, the
user may explicitly add a field within A that holds a reference to a B. He may even
add a ‘backpointer’ to an instance of his encloser, like this:

Metadata API

Page 92

public class AA {
 public int aii;
 public BB pbb; // DefineField(“pbb”, fdPublic, sig) => fdpbb
 public class BB {
 public int bii;
 public AA paa; // DefineField(“paa”, fdPublic, sig) => fdpaa
 }
}

With this definition of AA, we can write programs like the following, and things work
fine:

public static void main(String[] args) {
 AA aa = new AA(); // create an AA object
 AA.BB bb = new AA.BB(); // create a BB object
 aa.pbb = bb; // hook ‘em one way
 bb.paa = aa; // hook ‘em the other
 aa.aii = 1; // works fine
 aa.pbb.bii = 2; // works fine
 bb.paa.aii = 3; // works fine, even if aii were private
}

A language may choose to hide all of this plumbing detail from their users, and
present a model that automatically provides an object reference field with the
encloser, and nestee, etc. The point is, metadata will not generate such plumbing.
If a language wants it, the compiler must emit, via DefineField calls, as shown in the
code comment above.

Such additions, by the compiler, can clearly be used as a route to implement “inner”
classes

Metadata API

Page 93

8 Distinguished Custom Attributes
The metadata engine implements two sorts of Custom Attribute, called (genuine)
Custom Attributes, and pseudo Custom Attributes. In the remainder of this
appendix, we’ll abbreviate these terms to CA and PCA. Both CAs and PCAs are
‘handed over’ to metadata via the DefineCustomAttribute method. But they are
treated differently, as follows:

• a CA is stored directly into the metadata. The ‘blob’ which holds its defining
data is not checked or parsed. That ‘blob’ can be retrieved later

• a PCA is recognized because its name is one of a handful on metadata’s hard-
wired list of PCAs. The engine parses its ‘blob’ and uses this information to
set bits and/or fields within the metadata tables. The engine then totally
discards the ‘blob’. So you cannot retrieve that ‘blob’ later – it doesn’t exist

PCAs therefore serve to capture user ‘directives’, using the same familiar syntax the
compiler provides for regular CAs – but these ‘directives’ are then stored into the
more space-efficient form of metadata tables. Tables are also faster to check at
runtime than full-bloodied (genuine) CAs. An example of a PCA is the
SerializableAttribute – if the compiler calls DefineCustomAttribute with this PCA as an
argument, the metadata engine simply sets the tdSerializable bit on the target class
definition.

Many CAs are invented by higher layers of software. Metadata stores them, and
returns them, without knowing, or caring, what they ‘mean’. But all PCAs, plus a
handful of regular CAs are of special interest to compilers and to the Runtime. An
example of such ‘distinguished’ CAs is System.Reflection.DefaultMemberAttribute.
This is stored in metadata as a regular CA ‘blob’, but Reflection uses this CA when
called to Invoke the default member (property) for a Class.

This appendix lists all of the PCAs and ‘distinguised’ CAs – where ‘distinguished’
means that the Runtime and/or Compilers pay direct attention to them.

Note that it is a .net framework design guideline that all CAs should be named to end
in “Attribute” (Neither metadata or runtime check, or care, about this convention)

8.1 Pseudo Custom Attributes (PCAs)
The metadata engine checks for the following CAs, as part of the processing for the
DefineCustomAttribute method. The check is solely on their name – for example
“DllImportAttribute” – their namespace is ignored. If a name match is found, the
metadata engine parses the ‘blob’ argument and sets bits and/or fields within the
metadata tables. It then throws the ‘blob’ on the floor (this is the definition of a PCA
– see above):

System.InteropServices.DllImportAttribute
System.InteropServices.GuidAttribute
System.InteropServices.ComImportAttribute
System.InteropServices.MethodImplAttribute
System.InteropServices.MethodImpl2Attribute
System.InteropServices.MarshalAsAttribute
System.InteropServices.PreserveSigAttribute
System.InteropServices.InAttribute
System.InteropServices.OutAttribute

Metadata API

Page 94

System.InteropServices.InterfaceTypeAttribute
System.InteropServices.ClassInterfaceAttribute
System.InteropServices.OptionalAttribute
System.InteropServices.StructLayoutAttribute
System.InteropServices.FieldOffsetAttribute
System.InteropServices.DebuggableAttribute

System.SerializableAttribute
System.NonSerializedAttribute

For a definition of these PCAs, see the online doc for .NET Framwork class libraries,
or the “Data Interop” spec.

8.2 CAs that affect Runtime
The Runtime ‘pays attention’ to the CAs listed below. So, if a compiler attaches any
of these CAs to a programming element (Class, Field, Assembly, etc, etc), then it will
affect how that element is treated at runtime. For further details on this long list of
CAs, consult the online doc for the .NET Framework class library, or appropriate
specs in the area that each covers.

CAs that control runtime behavior of the JIT-compiler and the debugger:

System.Diagnostics.DebuggerHiddenAttribute
System.Diagnostics.DebuggerStepThroughAttribute

CA that is used by Reflection’s Invoke call – it invokes the property for the Type
defined in this CA:

System.Reflection.DefaultMemberAttribute

CAs that control behavior of Interop services (inter-operation with ‘classic’ COM
objects, and PInvoke dispatch to unmanaged code):

System.Runtime.InteropServices.ComConversionLossAttribute
System.Runtime.InteropServices.ComEmulateAttribute
System.Runtime.InteropServices.ComImportAttribute
System.Runtime.InteropServices.ComRegisterFunctionAttribute
System.Runtime.InteropServices.ComSourceInterfacesAttribute
System.Runtime.InteropServices.ComUnregisterFunctionAttribute
System.Runtime.InteropServices.DispIdAttribute
System.Runtime.InteropServices.ExposeHResultAttribute
System.Runtime.InteropServices.FieldOffsetAttribute
System.Runtime.InteropServices.GlobalObjectAttribute
System.Runtime.InteropServices.HasDefaultInterfaceAttribute
System.Runtime.InteropServices.IDispatchImplAttribute
System.Runtime.InteropServices.ImportedFromTypeLibAttribute
System.Runtime.InteropServices.InterfaceTypeAttribute
System.Runtime.InteropServices.NoComRegistrationAttribute
System.Runtime.InteropServices.NoIDispatchAttribute
System.Runtime.InteropServices.PredeclaredAttribute
System.Runtime.InteropServices.StructLayoutAttribute
System.Runtime.InteropServices.TypeLibFuncAttribute
System.Runtime.InteropServices.TypeLibTypeAttribute
System.Runtime.InteropServices.TypeLibVarAttribute

Metadata API

Page 95

CAs that affect behavior of remoting:

System.Runtime.Remoting.ContextAttribute
System.Runtime.Remoting.Synchronization
System.Runtime.Remoting.ThreadAffinity
System.Runtime.Remoting.OneWayAttribute

CAs that affect the security checks performed upon method invocations at runtime:

System.Security.DynamicSecurityMethodAttribute
System.Security.Permissions.SecurityAttribute
System.Security.Permissions.CodeAccessSecurityAttribute
System.Security.Permissions.EnvironmentPermissionAttribute
System.Security.Permissions.FileDialogPermissionAttribute
System.Security.Permissions.FileIOPermissionAttribute
System.Security.Permissions.IsolatedStoragePermissionAttribute
System.Security.Permissions.IsolatedStorageFilePermissionAttribute
System.Security.Permissions.PermissionSetAttribute
System.Security.Permissions.PublisherIdentityPermissionAttribute
System.Security.Permissions.ReflectionPermissionAttribute
System.Security.Permissions.RegistryPermissionAttribute
System.Security.Permissions.SecurityPermissionAttribute
System.Security.Permissions.SiteIdentityPermissionAttribute
System.Security.Permissions.StrongNameIdentityPermissionAttribute
System.Security.Permissions.UIPermissionAttribute
System.Security.Permissions.ZoneIdentityPermissionAttribute
System.Security.Permissions.PrincipalPermissionAttribute
System.Security.SuppressUnmanagedCodeSecurityAttribute
System.Security.UnverifiableCodeAttribute

CA that denotes a TLS (thread-local storage) field:

System.ThreadStatic

The following CAs are used by the ALink tool to transfer information between
Modules and Assemblies (they are temporarily ‘hung off’ a TypeRef to a class called
AssemblyAttributesGoHere) then merged by ALink and ‘hung off’ the assembly:

System.Runtime.CompilerServices.AssemblyOperatingSystemAttribute
System.Runtime.CompilerServices.AssemblyProcessorAttribute
System.Runtime.CompilerServices.AssemblyCultureAttribute
System.Runtime.CompilerServices.AssemblyVersionAttribute
System.Runtime.CompilerServices.AssemblyKeyFileAttribute
System.Runtime.CompilerServices.AssemblyKeyNameAttribute
System.Runtime.CompilerServices.AssemblyDelaySignAttribute

9 Bitmasks
This section explains the various bitmasks used to define attributes of Types,
Methods, Fields, etc. All of the enums described in this section are defined in
CorHdr.h, which ships with the .NET SDK

Metadata API

Page 96

9.1 Token Types [CorTokenType]
These are the values of the top byte in any metadata token that says what kind
of token it is. Unlike other lists in this spec, we includes the value assigned to
each member:

 mdtModule = 0x00000000, //

 mdtTypeRef = 0x01000000, //

 mdtTypeDef = 0x02000000, //

 mdtFieldDef = 0x04000000, //

 mdtMethodDef = 0x06000000, //

 mdtParamDef = 0x08000000, //

 mdtInterfaceImpl = 0x09000000, //

 mdtMemberRef = 0x0a000000, //

 mdtCustomAttribute = 0x0c000000, //

 mdtPermission = 0x0e000000, //

 mdtSignature = 0x11000000, //

 mdtEvent = 0x14000000, //

 mdtProperty = 0x17000000, //

 mdtModuleRef = 0x1a000000, //

 mdtTypeSpec = 0x1b000000, //

 mdtAssembly = 0x20000000, //

 mdtAssemblyRef = 0x23000000, //

 mdtFile = 0x26000000, //

 mdtExportedType = 0x27000000, //

 mdtManifestResource = 0x28000000, //

 mdtString = 0x70000000, //

 mdtName = 0x71000000, //

 mdtBaseType = 0x72000000,

9.2 Scope Open Flags [CorOpenFlags]
These are used on IMetadataDispenser::OpenScope to specify the sort of access you
want

ofRead = 0x00000000, // Open scope for read

ofWrite = 0x00000001, // Open scope for write.

ofCopyMemory = 0x00000002, // Open scope with memory. Ask metadata to

 // maintain its own copy of memory.

ofCacheImage = 0x00000004, // EE maps but does not do relocations or

 // verify image

 ofNoTypeLib = 0x00000080, // Don't OpenScope on a typelib.

9.3 Options for Size Calculation [CorSaveSize]
These are used on IMetaDataEmit::GetSaveSize to specify the sort of calculation you
want

cssAccurate = 0x0000, // Find exact save size, accurate but slower.

cssQuick = 0x0001, // Estimate save size, may pad estimate,

 // but faster.

 cssDiscardTransientCAs = 0x0002, // remove all of the CAs of discardable types

Metadata API

Page 97

9.4 Flags for Types [CorTypeAttr]
You can define three kinds of Type in metadata – reference types (classes and
interfaces), valuetypes (includes enums) and unmanaged valuetypes. You define
any of those types using:

IMetaDataEmit::DefineTypeDef – to make the initial definition
IMetaDataEmit::SetTypeDefProps – to change the attributes for a previously-
defined type

Both DefineTypeDef and SetTypeDefProps include a DWORD parameter, called
dwTypeDefFlags, that is a bitmask of the CorTypeAttr enum. The individual bits
within the CorTypeAttr enum are defined as follows:

// Use this mask to retrieve the type visibility information.

tdVisibilityMask = 0x00000007,

tdNotPublic = 0x00000000, // Class is not public scope.

tdPublic = 0x00000001, // Class is public scope.

tdNestedPublic = 0x00000002, // Class is nested with public visibility

tdNestedPrivate = 0x00000003, // Class is nested with private visibility.

tdNestedFamily = 0x00000004, // Class is nested with family visibility.

tdNestedAssembly = 0x00000005, // Class is nested with assembly visibility.

tdNestedFamANDAssem = 0x00000006, // Class is nested with family and assembly

 // visibility.

tdNestedFamORAssem = 0x00000007, // Class is nested with family or assembly

 // visibility.

// Use this mask to retrieve class layout information

tdLayoutMask = 0x00000018,

tdAutoLayout = 0x00000000, // Class fields are auto-laid out

tdSequentialLayout = 0x00000008, // Class fields are laid out sequentially

tdExplicitLayout = 0x00000010, // Layout is supplied explicitly

// Use this mask to retrieve class semantics information.

tdClassSemanticsMask = 0x00000020,

tdClass = 0x00000000, // Type is a class.

tdInterface = 0x00000020, // Type is an interface.

// Special semantics in addition to class semantics.

tdAbstract = 0x00000080, // Class is abstract

tdSealed = 0x00000100, // Class is concrete and may not be extended

tdSpecialName = 0x00000400, // Class name is special. Name describes how.

// Implementation attributes.

tdImport = 0x00001000, // Class / interface is imported

tdSerializable = 0x00002000, // The class is Serializable.

// Use tdStringFormatMask to retrieve string information for native interop

tdStringFormatMask = 0x00030000,

tdAnsiClass = 0x00000000, // LPTSTR is interpreted as ANSI in

this class

tdUnicodeClass = 0x00010000, // LPTSTR is interpreted as UNICODE

tdAutoClass = 0x00020000, // LPTSTR is interpreted automatically

tdBeforeFieldInit = 0x00100000, // Initialize the class any time

 // before first static field access.

Metadata API

Page 98

// Flags reserved for runtime use.

tdReservedMask = 0x00040800,

tdRTSpecialName = 0x00000800, // Runtime should check name encoding.

tdHasSecurity = 0x00040000, // Class has security associate with it.

Figure 1 shows, with a r sign, which flags can be set for each kind or type-
definition: class, interface, valuetype, and unmanaged valuetype. Conversely, the
blank boxes show which settings are illegal. The table includes horizontal, shaded
bands: these gather together flags that are mutually exclusive. Specifically:

• If defining a nested type or valuetype, you must set exactly one of the block of
flags tdNestedPublic thru tdNestedFamOrAssem

• If defining a class, valuetype or unmanaged valuetype, you must set exactly one
of tdAutoLayout, tdLayoutSequential or tdExplicitLayout

Figure 1 – Legal Flag Combinations from CorTypeAttr

 Class Interface ValueType Unmgd ValueType

tdClass r

tdInterface r

tdNotPublic r r r r

tdPublic r r r r

tdNestedPublic r r r

tdNestedPrivate r r r

tdNestedFamily r r r

tdNestedAssembly r r r

tdNestedFamANDAssem r r r

tdNestedFamOrAssem r r r

tdAutoLayout r r r

tdLayoutSequential r r r

tdExplicitLayout r r r

tdAbstract r r r r

tdSealed r r r

tdSpecialName r r r r

tdRTSpecialName r r r r

Notes:

The runtime also takes note of each Type’s inheritance chain to decide how to treat
them –

• System.ValueType
• System.Enum
• System.MarshalByRefObject
• System.ContextBoundObject

Metadata API

Page 99

9.5 Flags for Fields [CorFieldAttr]
Fields are defined using IMetadataEmit::DefineField. The flags you can set are as
follows:

// member access mask - Use this mask to retrieve accessibility information.

fdFieldAccessMask = 0x0007,

fdPrivateScope = 0x0000, // Member not referenceable.

fdPrivate = 0x0001, // Accessible only by the parent type.

fdFamANDAssem = 0x0002, // Accessible by sub-types only in this Assembly.

fdAssembly = 0x0003, // Accessibly by anyone in the Assembly.

fdFamily = 0x0004, // Accessible only by type and sub-types.

fdFamORAssem = 0x0005, // Accessibly by sub-types anywhere, plus anyone

 // in assembly.

fdPublic = 0x0006, // Accessibly by anyone who has visibility to

 // this scope.

// field contract attributes.

fdStatic = 0x0010, // Defined on type, else per instance.

fdInitOnly = 0x0020, // Field may only be initialized, not written

 // to after init.

fdLiteral = 0x0040, // Value is compile time constant.

fdNotSerialized = 0x0080, // Field does not have to be serialized when

 // type is remoted.

fdSpecialName = 0x0200, // field is special. Name describes how.

// interop attributes

fdPinvokeImpl = 0x2000, // Implementation is forwarded through pinvoke.

// Reserved flags for runtime use only.

fdReservedMask = 0x9500,

fdRTSpecialName = 0x0400, // Runtime(metadata internal APIs)

should check name encoding.

fdHasFieldMarshal = 0x1000, // Field has marshalling information.

fdHasDefault = 0x8000, // Field has default.

fdHasFieldRVA = 0x0100, // Field has RVA.

9.6 Flags for Methods [CorMethodAttr]
Methods are defined using IMetadataEmit::DefineMethod. The flags you can set are
as follows:

// member access mask - Use this mask to retrieve accessibility information.

mdMemberAccessMask = 0x0007,

mdPrivateScope = 0x0000, // Member not referenceable.

mdPrivate = 0x0001, // Accessible only by the parent type.

mdFamANDAssem = 0x0002, // Accessible by sub-types only in this

 // Assembly.

mdAssem = 0x0003, // Accessibly by anyone in the Assembly.

mdFamily = 0x0004, // Accessible only by type and sub-types.

mdFamORAssem = 0x0005, // Accessibly by sub-types anywhere, plus

 // anyone in assembly.

mdPublic = 0x0006, // Accessibly by anyone who has visibility

 // to this scope.

Metadata API

Page 100

// method contract attributes.

mdStatic = 0x0010, // Defined on type, else per instance.

mdFinal = 0x0020, // Method may not be overridden.

mdVirtual = 0x0040, // Method virtual.

mdHideBySig = 0x0080, // Method hides by name+sig, else just by name.

// vtable layout mask - Use this mask to retrieve vtable attributes.

mdVtableLayoutMask = 0x0100,

mdReuseSlot = 0x0000, // The default.

mdNewSlot = 0x0100, // Method always gets a new slot in the vtable.

// method implementation attributes.

mdAbstract = 0x0400, // Method does not provide an implementation.

mdSpecialName = 0x0800, // Method is special. Name describes how.

// interop attributes

mdPinvokeImpl = 0x2000, // Implementation is forwarded through pinvoke.

mdUnmanagedExport = 0x0008, // Managed method exported via thunk to

 // unmanaged code.

// Reserved flags for runtime use only.

mdReservedMask = 0xd000,

mdRTSpecialName = 0x1000, // Runtime should check name encoding.

mdHasSecurity = 0x4000, // Method has security associate with it.

mdRequireSecObject = 0x8000, // Method calls another method containing

 // security code.

9.7 Flags for Method Parameters [CorParamAttr]
Method parameters are defined using IMetadataEmit::DefineParam and
SetParamProps. The flags you can set are as follows:

pdIn = 0x0001, // Param is [In]

pdOut = 0x0002, // Param is [out]

pdOptional = 0x0010, // Param is optional

// Reserved flags for Runtime use only.

pdReservedMask = 0xf000,

pdHasDefault = 0x1000, // Param has default value.

pdHasFieldMarshal = 0x2000, // Param has FieldMarshal.

pdUnused = 0xcfe0,

9.8 Flags for Properties [CorPropertyAttr]
Properties are defined using IMetadataEmit::DefineProperty. The flags you can set
are as follows:

prSpecialName = 0x0200, // property is special. Name describes how.

// Reserved flags for Runtime use only.

prReservedMask = 0xf400,

prRTSpecialName = 0x0400, // Runtime(metadata internal APIs) should check

 // name encoding.

prHasDefault = 0x1000, // Property has default

Metadata API

Page 101

prUnused = 0xe9ff,

9.9 Flags for Events [CorEventAttr]
Events are defined using IMetadataEmit::DefineEvent. The flags you can set are as
follows:

evSpecialName = 0x0200, // event is special. Name describes how.

// Reserved flags for Runtime use only.

evReservedMask = 0x0400,

evRTSpecialName = 0x0400, // Runtime(metadata internal APIs) should

 // check name encoding.

9.10 Flags for MethodSemantics

[CorMethodSemanticsAttr]
These flags describe the particular role played by each method defined (in a group)
by a call to IMetaDataEmit::DefineProperty or to DefineEvent. They are derived
from the way the methods were provided to the IMetaDataEmit::DefineProperty or
DefineEvent call. This enumeration is used to return information from the
IMetaDataImport::GetMethodSemantics call. Note that there is no corresponding
DefineMethodSemantics call. The flags that can be set in the returned information
are as follows:

 msSetter = 0x0001, // Setter for property

 msGetter = 0x0002, // Getter for property

 msOther = 0x0004, // other method for property or event

 msAddOn = 0x0008, // AddOn method for event

 msRemoveOn = 0x0010, // RemoveOn method for event

 msFire = 0x0020, // Fire method for event

9.11 Flags for Method Implementations

[CorMethodImpl]
Method implementations are defined using IMetadataEmit::DefineMethod,
DefineMethodImpl and SetRVA. The flags you can set are as follows:

// code impl mask

miCodeTypeMask = 0x0003, // Flags about code type.

miIL = 0x0000, // Method impl is MSIL.

miNative = 0x0001, // Method impl is native.

miOPTIL = 0x0002, // Method impl is OPTIL

miRuntime = 0x0003, // Method impl is provided by the runtime.

// managed mask

miManagedMask = 0x0004, // Flags specifying whether the code is managed

or unmanaged.

miUnmanaged = 0x0004, // Method impl is unmanaged, otherwise managed.

miManaged = 0x0000, // Method impl is managed.

// implementation info and interop

Metadata API

Page 102

miForwardRef = 0x0010, // Indicates method is defined; used

 // primarily in merge scenarios.

miPreserveSig = 0x0080, // Indicates method sig is not to be mangled

 // to do HRESULT conversion.

miInternalCall = 0x1000, // Reserved for internal use.

miSynchronized = 0x0020, // Method is single threaded through the body.

miNoInlining = 0x0008, // Method may not be inlined.

miMaxMethodImplVal = 0xffff, // Range check value

9.12 Flags for Security [CorDeclSecurity]
Security attributes are declared using IMetaDataEmit::DefineSecurityAttributeSet.
The flags you can set are listed below. Please see the Permissions spec for their
meaning:

 dclActionMask = 0x000f, // Mask allows growth of enum.

 dclActionNil = 0x0000,

 dclRequest = 0x0001, //

 dclDemand = 0x0002, //

 dclAssert = 0x0003, //

 dclDeny = 0x0004, //

 dclPermitOnly = 0x0005, //

 dclLinktimeCheck = 0x0006, //

 dclInheritanceCheck = 0x0007, //

 dclRequestMinimum = 0x0008, //

 dclRequestOptional = 0x0009, //

 dclRequestRefuse = 0x000a, //

 dclPrejitGrant = 0x000b, // Persisted grant set at prejit time

 dclPrejitDenied = 0x000c, // Persisted denied set at prejit time

 dclNonCasDemand = 0x000d, //

 dclNonCasLinkDemand = 0x000e,

 dclNonCasInheritance= 0x000f,

 dclMaximumValue = 0x000f, // Maximum legal value

9.13 Struct for Field Offsets

[COR_FIELD_OFFSET]
This struct is used by IMetaDataEmit::SetClassLayout. It has two fields, as follows:

 mdFieldDef ridOfField;
 ULONG ulOffset;

9.14 Typedef for Signatures [PCOR_SIGNATURE]
This type is used everywhere a metadata method takes a signature as an argument.
In fact, it is simply a typedef for a pointer to an unsigned byte, so giving the
definition doesn’t help! However, for what it’s worth, here’s the definition:

typedef unsigned __int8 COR_SIGNATURE

typedef COR_SIGNATURE* PCOR_SIGNATURE

See section 10 for details on how signature ‘blobs’ should be formatted

Metadata API

Page 103

9.15 Flags for PInvoke Interop [CorPinvokeMap]
Attributes that control how unmanaged methods are invoked, and how their
arguments are mashalled via PInvoke, are defined using
IMetadataEmit::DefinePinvokeMap or SetPinvokeMap. All of the flags below can be
applied only to a method, never to a field. The flags you can set are as follows:

pmNoMangle = 0x0001, // Pinvoke is to use the member name as specified.

// Use this mask to retrieve the CharSet information.

pmCharSetMask = 0x0006,

pmCharSetNotSpec = 0x0000,

pmCharSetAnsi = 0x0002,

pmCharSetUnicode = 0x0004,

pmCharSetAuto = 0x0006,

pmSupportsLastError = 0x0040, // Information about target function. Not

 // relevant for fields.

// None of the calling convention flags is relevant for fields.

pmCallConvMask = 0x0700,

pmCallConvWinapi = 0x0100, // Pinvoke will use native callconv appropriate

 // to target windows platform.

pmCallConvCdecl = 0x0200,

pmCallConvStdcall = 0x0300,

pmCallConvThiscall = 0x0400, // In M9, pinvoke will raise exception.

pmCallConvFastcall = 0x0500,

Note that you can set only one of the calling convention flags

9.16 SetOptions: Duplicate Checking

[CorCheckDuplicatesFor]
These flags are used in calling IMetadataDispenser::SetOption to control what
checking the metadata API does for duplicates. The flags you can set in the bitmask
are:

 MDDupAll = 0xffffffff,

 MDDupENC = MDDupAll,

 MDNoDupChecks = 0x00000000,

 MDDupTypeDef = 0x00000001,

 MDDupInterfaceImpl = 0x00000002,

 MDDupMethodDef = 0x00000004,

 MDDupTypeRef = 0x00000008,

 MDDupMemberRef = 0x00000010,

 MDDupCustomAttribute = 0x00000020,

 MDDupParamDef = 0x00000040,

 MDDupPermission = 0x00000080,

 MDDupProperty = 0x00000100,

 MDDupEvent = 0x00000200,

 MDDupFieldDef = 0x00000400,

 MDDupSignature = 0x00000800,

 MDDupModuleRef = 0x00001000,

 MDDupTypeSpec = 0x00002000,

 MDDupImplMap = 0x00004000,

Metadata API

Page 104

 MDDupAssemblyRef = 0x00008000,

 MDDupFile = 0x00010000,

 MDDupExportedType = 0x00020000,

 MDDupManifestResource = 0x00040000,

 // gap for debug junk

 MDDupAssembly = 0x10000000,

 // This is the default behavior on metadata. It will check duplicates for

 // TypeRef, MemberRef, Signature, and TypeSpec

 MDDupDefault = MDNoDupChecks | MDDupTypeRef | MDDupMemberRef |

 MDDupSignature | MDDupTypeSpec,

9.17 SetOptions: Ref-to-Def Optimizations

[CorRefToDefCheck]
These flags are used in calling IMetadataDispenser::SetOption to control ref-to-def
optimizations. The flags you can set in the bitmask are:

 // default behavior is to always perform TypeRef to TypeDef and MemberRef

 // to MethodDef/FieldDef optimization

 MDRefToDefDefault = 0x00000003,

 MDRefToDefAll = 0xffffffff,

 MDRefToDefNone = 0x00000000,

 MDTypeRefToDef = 0x00000001,

 MDMemberRefToDef = 0x00000002

9.18 SetOptions: Token Remap Notification

[CorNotificationForTokenMovement]
These flags are used in calling IMetadataDispenser::SetOption to specify which token
remaps are notified to you. The flags you can set in the bitmask are:

 // default behavior is to notify TypeRef, MethodDef, MemberRef, and

 // FieldDef token remaps

 MDNotifyDefault = 0x0000000f,

 MDNotifyAll = 0xffffffff,

 MDNotifyNone = 0x00000000,

 MDNotifyMethodDef = 0x00000001,

 MDNotifyMemberRef = 0x00000002,

 MDNotifyFieldDef = 0x00000004,

 MDNotifyTypeRef = 0x00000008,

 MDNotifyTypeDef = 0x00000010,

 MDNotifyParamDef = 0x00000020,

 MDNotifyInterfaceImpl = 0x00000040,

 MDNotifyProperty = 0x00000080,

 MDNotifyEvent = 0x00000100,

 MDNotifySignature = 0x00000200,

 MDNotifyTypeSpec = 0x00000400,

 MDNotifyCustomAttribute = 0x00000800,

 MDNotifySecurityValue = 0x00001000,

 MDNotifyPermission = 0x00002000,

Metadata API

Page 105

 MDNotifyModuleRef = 0x00004000,

 MDNotifyNameSpace = 0x00008000,

 MDNotifyAssemblyRef = 0x01000000,

 MDNotifyFile = 0x02000000,

 MDNotifyExportedType = 0x04000000,

 MDNotifyResource = 0x08000000,

9.19 SetOptions: Edit & Continue [CorSetENC]
These flags are used in calling IMetadataDispenser::SetOption to specify options for
your Edit And Continue scope. You can set just one of the following values – this is
not a bitmask:

MDSetENCOn = 0x00000001, // Deprecated name.

MDSetENCOff = 0x00000002, // Deprecated name.

MDUpdateENC = 0x00000001, // ENC mode. Tokens don't move; can be

updated.

MDUpdateFull = 0x00000002, // "Normal" update mode.

MDUpdateExtension = 0x00000003, // Extension mode. Tokens don't move, adds

only.

MDUpdateIncremental = 0x00000004, // Incremental compilation

MDUpdateMask = 0x00000007,

MDUpdateDelta = 0x00000008, // If ENC on, save only deltas.

9.20 SetOptions: Out-of-Order Errors

[CorErrorIfEmitOutOfOrder]
These flags are used in calling IMetadataDispenser::SetOption to specify which sorts
of out-of-order emit ‘errors’ you are notified of.

MDErrorOutOfOrderDefault = 0x00000000, // default not to generate any error

MDErrorOutOfOrderNone = 0x00000000, // do not generate error for out of

 // order emit

MDErrorOutOfOrderAll = 0xffffffff, // generate out of order emit for method,

 // field, param, property, and event

MDMethodOutOfOrder = 0x00000001, // generate error when methods are emitted

 // out of order

MDFieldOutOfOrder = 0x00000002, // generate error when fields are emitted

 // out of order

MDParamOutOfOrder = 0x00000004, // generate error when params are emitted

 // out of order

MDPropertyOutOfOrder = 0x00000008, // generate error when properties are

 // emitted out of order

MDEventOutOfOrder = 0x00000010, // generate error when events are emitted

 // out of order

Metadata API

Page 106

9.21 SetOptions: Hide Deleted Tokens

[CorImportOptions]
These flags are used in calling IMetadataDispenser::SetOption, in an Edit & Continue
regime, to specify which sorts of deleted tokens are returned in enumerations.

MDImportOptionDefault = 0x00000000, // default to skip over deleted

 // records

MDImportOptionAll = 0xFFFFFFFF, // Enumerate everything

MDImportOptionAllTypeDefs = 0x00000001, // all of the typedefs including the

 // deleted typedef

MDImportOptionAllMethodDefs = 0x00000002, // all of the methoddefs including the

 // deleted ones

MDImportOptionAllFieldDefs = 0x00000004, // all of the fielddefs including the

 // deleted ones

MDImportOptionAllProperties = 0x00000008, // all of the properties including the

 // deleted ones

MDImportOptionAllEvents = 0x00000010, // all of the events including the

 // deleted ones

MDImportOptionAllCustomAttributes = 0x00000020, // all of the custom attributes

 // including the deleted ones

MDImportOptionAllExportedTypes = 0x00000040, // all of the ExportedTypes

 // including the deleted ones

9.22 Flags for Assemblies [CorAssemblyFlags]
Assemblies are defined using IMetadataEmit::DefineAssembly. The flags you can set
are as follows:

afPublicKey = 0x0001, // The assembly ref holds the full

 // (unhashed) public key.

afCompatibilityMask = 0x0070,

afSideBySideCompatible = 0x0000, // The assembly is side by side

 // compatible.

afNonSideBySideAppDomain= 0x0010, // The assembly cannot execute with other

 // versions if they are executing in the

 // same application domain.

afNonSideBySideProcess = 0x0020, // The assembly cannot execute with other

 // versions if they are executing in the

 // same process.

afNonSideBySideMachine = 0x0030, // The assembly cannot execute with other

 // versions if they are executing on the

 // same machine.

afEnableJITcompileTracking = 0x8000, // From "DebuggableAttribute".

afDisableJITcompileOptimizer= 0x4000, // From "DebuggableAttribute".

Metadata API

Page 107

9.23 Flags for Manifest Resources

[CorManifestResourceFlags]
Manifest resources are defined using IMetadataEmit::DefineManifestResource. The
flags you can set are as follows:

mrVisibilityMask = 0x0007,

mrPublic = 0x0001, // The Resource is exported from the Assembly.

mrPrivate = 0x0002, // The Resource is private to the Assembly.

9.24 Flags for Files [CorFileFlags]
File attributes are defined using IMetadataEmit::DefineFile. The flags you can set
are as follows:

ffContainsMetaData = 0x0000, // This is not a resource file

ffContainsNoMetaData = 0x0001, // This is a resource file or other

 // non-metadata-containing file

9.25 Element Types in the runtime

[CorElementType]
These element types are used in defining method and field signatures. Many of
these require no explanation, and are simply listed by-name. See the Signatures
Spec for more detail. The total list is:

ELEMENT_TYPE_END = 0x0,

ELEMENT_TYPE_VOID = 0x1,

ELEMENT_TYPE_BOOLEAN = 0x2,

ELEMENT_TYPE_CHAR = 0x3,

ELEMENT_TYPE_I1 = 0x4,

ELEMENT_TYPE_U1 = 0x5,

ELEMENT_TYPE_I2 = 0x6,

ELEMENT_TYPE_U2 = 0x7,

ELEMENT_TYPE_I4 = 0x8,

ELEMENT_TYPE_U4 = 0x9,

ELEMENT_TYPE_I8 = 0xa,

ELEMENT_TYPE_U8 = 0xb,

ELEMENT_TYPE_R4 = 0xc,

ELEMENT_TYPE_R8 = 0xd,

ELEMENT_TYPE_STRING = 0xe,

// every type above PTR will be simple type

ELEMENT_TYPE_PTR = 0xf, // PTR <type>

ELEMENT_TYPE_BYREF = 0x10, // BYREF <type>

// Please use ELEMENT_TYPE_VALUETYPE. ELEMENT_TYPE_VALUECLASS is deprecated.

ELEMENT_TYPE_VALUETYPE = 0x11, // VALUETYPE <class Token>

ELEMENT_TYPE_CLASS = 0x12, // CLASS <class Token>

ELEMENT_TYPE_ARRAY = 0x14, // MDARRAY <type> <rank> <bcount>

 // <bound1> ... <lbcount> <lb1> ...

ELEMENT_TYPE_TYPEDBYREF = 0x16, // This is a simple type.

Metadata API

Page 108

ELEMENT_TYPE_I = 0x18, // native integer size

ELEMENT_TYPE_U = 0x19, // native unsigned integer size

ELEMENT_TYPE_FNPTR = 0x1B, // FNPTR <complete sig for the function

 // including calling convention>

ELEMENT_TYPE_OBJECT = 0x1C, // Shortcut for System.Object

ELEMENT_TYPE_SZARRAY = 0x1D, // Shortcut for single dimension zero

 // lower bound array SZARRAY <type>

// This is only for binding

ELEMENT_TYPE_CMOD_REQD = 0x1F, // required C modifier : E_T_CMOD_REQD

 // <mdTypeRef/mdTypeDef>

ELEMENT_TYPE_CMOD_OPT = 0x20, // optional C modifier : E_T_CMOD_OPT

 // <mdTypeRef/mdTypeDef>

// This is for signatures generated internally (which will not be persisted in

// any way).

ELEMENT_TYPE_INTERNAL = 0x21, // INTERNAL <typehandle>

// Note that this is the max of base type excluding modifiers

ELEMENT_TYPE_MAX = 0x22, // first invalid element type

ELEMENT_TYPE_MODIFIER = 0x40,

ELEMENT_TYPE_SENTINEL = 0x01 | ELEMENT_TYPE_MODIFIER, // sentinel

 // for varargs

 ELEMENT_TYPE_PINNED = 0x05 | ELEMENT_TYPE_MODIFIER,

9.26 Calling Conventions [CorCallingConvention]
These types are used in defining method and field signatures. They are used by the
JIT to determine which sequence of machine code to generate. See the Signatures
Spec for more detail.

 IMAGE_CEE_CS_CALLCONV_DEFAULT = 0x0,

 IMAGE_CEE_CS_CALLCONV_VARARG = 0x5,

 IMAGE_CEE_CS_CALLCONV_FIELD = 0x6,

 IMAGE_CEE_CS_CALLCONV_LOCAL_SIG = 0x7,

 IMAGE_CEE_CS_CALLCONV_PROPERTY = 0x8,

 IMAGE_CEE_CS_CALLCONV_UNMGD = 0x9,

 IMAGE_CEE_CS_CALLCONV_MAX = 0x10, // first invalid calling convention

 // The high bits of the calling convention convey additional info

 IMAGE_CEE_CS_CALLCONV_MASK = 0x0f, // Calling convention is bottom

 // 4 bits

 IMAGE_CEE_CS_CALLCONV_HASTHIS = 0x20, // Top bit indicates a 'this'

 // parameter

 IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS = 0x40, // This parameter is explicitly

 // in the signature

9.27 Unmanaged Calling Conventions

[CorUnmanagedCallingConvention]
These types are used in defining method signatures. They are used by the JIT to
determine which sequence of machine code to generate. Each is self-describing:

 IMAGE_CEE_UNMANAGED_CALLCONV_C = 0x1,

Metadata API

Page 109

 IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL = 0x2,

 IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL = 0x3,

 IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL = 0x4,

 IMAGE_CEE_CS_CALLCONV_C = IMAGE_CEE_UNMANAGED_CALLCONV_C,

 IMAGE_CEE_CS_CALLCONV_STDCALL = IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL,

 IMAGE_CEE_CS_CALLCONV_THISCALL = IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL,

 IMAGE_CEE_CS_CALLCONV_FASTCALL = IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL,

Note that FASTCALL is defined only as a placeholder for the future; the CLR does
not support Fast calls in V1

9.28 Argument Types [CorArgType]
These types are used in defining method signatures. See section 10 for more detail

 IMAGE_CEE_CS_END = 0x0,

 IMAGE_CEE_CS_VOID = 0x1,

 IMAGE_CEE_CS_I4 = 0x2,

 IMAGE_CEE_CS_I8 = 0x3,

 IMAGE_CEE_CS_R4 = 0x4,

 IMAGE_CEE_CS_R8 = 0x5,

 IMAGE_CEE_CS_PTR = 0x6,

 IMAGE_CEE_CS_OBJECT = 0x7,

 IMAGE_CEE_CS_STRUCT4 = 0x8,

 IMAGE_CEE_CS_STRUCT32 = 0x9,

 IMAGE_CEE_CS_BYVALUE = 0xA,

9.29 Native Types [CorNativeType]
These are used to define rules when marshalling method arguments between
managed and unmanaged code, for example, in the IMetaDataEmit::SetFieldMarshal
method. See the DataTypeMarshaling spec for details.

 NATIVE_TYPE_END = 0x0, //DEPRECATED

 NATIVE_TYPE_VOID = 0x1, //DEPRECATED

 NATIVE_TYPE_BOOLEAN = 0x2, // (4 byte boolean value: TRUE = non-zero,

 // FALSE = 0)

 NATIVE_TYPE_I1 = 0x3,

 NATIVE_TYPE_U1 = 0x4,

 NATIVE_TYPE_I2 = 0x5,

 NATIVE_TYPE_U2 = 0x6,

 NATIVE_TYPE_I4 = 0x7,

 NATIVE_TYPE_U4 = 0x8,

 NATIVE_TYPE_I8 = 0x9,

 NATIVE_TYPE_U8 = 0xa,

 NATIVE_TYPE_R4 = 0xb,

 NATIVE_TYPE_R8 = 0xc,

 NATIVE_TYPE_SYSCHAR = 0xd, //DEPRECATED

 NATIVE_TYPE_VARIANT = 0xe, //DEPRECATED

 NATIVE_TYPE_CURRENCY = 0xf,

 NATIVE_TYPE_PTR = 0x10, //DEPRECATED

 NATIVE_TYPE_DECIMAL = 0x11, //DEPRECATED

Metadata API

Page 110

 NATIVE_TYPE_DATE = 0x12, //DEPRECATED

 NATIVE_TYPE_BSTR = 0x13,

 NATIVE_TYPE_LPSTR = 0x14,

 NATIVE_TYPE_LPWSTR = 0x15,

 NATIVE_TYPE_LPTSTR = 0x16,

 NATIVE_TYPE_FIXEDSYSSTRING = 0x17,

 NATIVE_TYPE_OBJECTREF = 0x18, //DEPRECATED

 NATIVE_TYPE_IUNKNOWN = 0x19,

 NATIVE_TYPE_IDISPATCH = 0x1a,

 NATIVE_TYPE_STRUCT = 0x1b,

 NATIVE_TYPE_INTF = 0x1c,

 NATIVE_TYPE_SAFEARRAY = 0x1d,

 NATIVE_TYPE_FIXEDARRAY = 0x1e,

 NATIVE_TYPE_INT = 0x1f,

 NATIVE_TYPE_UINT = 0x20,

 NATIVE_TYPE_NESTEDSTRUCT = 0x21, //DEPRECATED (use NATIVE_TYPE_STRUCT)

 NATIVE_TYPE_BYVALSTR = 0x22,

 NATIVE_TYPE_ANSIBSTR = 0x23,

 NATIVE_TYPE_TBSTR = 0x24, // select BSTR or ANSIBSTR depending on

 // platform

 NATIVE_TYPE_VARIANTBOOL = 0x25, // (2-byte boolean value: TRUE = -1,

 // FALSE = 0)

 NATIVE_TYPE_FUNC = 0x26,

 NATIVE_TYPE_ASANY = 0x28,

 NATIVE_TYPE_ARRAY = 0x2a,

 NATIVE_TYPE_LPSTRUCT = 0x2b,

 NATIVE_TYPE_CUSTOMMARSHALER = 0x2c, // Custom marshaler native type. This

 // must be followed by a string of the following format:

 // "Native type name/0Custom marshaler type name/0Optional cookie/0"

 // Or

 // "{Native type GUID}/0Custom marshaler type name/0Optional cookie/0"

 NATIVE_TYPE_ERROR = 0x2d, // This native type coupled with

 // ELEMENT_TYPE_I4 will map to VT_HRESULT

 NATIVE_TYPE_MAX = 0x50, // first invalid element type

10 Signatures
The word signature is conventionally used to describe the type info for a function or
method – that’s to say, the type of each of its parameters, and the type of its return
value. Within metadata, we extend the use of the word signature to also describe
the type info for fields, properties and local variables. Each Signature is stored as a
(counted) byte array in the Blob heap. There are five sorts of Signature, as follows:

• MethodDefSig
• MethodRefSig – differs from a MethodDefSig only for VARARG calls
• FieldSig
• PropertySig
• LocalVarSig

You can tell which sort of Signature blob you are looking at from the value of its
leading byte (see later)

Metadata API

Page 111

This section defines the binary blob format for each sort of Signature. For the most
part, we use syntax diagrams (hopefully easier to understand than formal XML or
EBNF)

Note that Signatures are compressed before being stored into the blob heap. It’s
actually the compiler or code generator who is responsible for compressing them,
before passing them into the metadata engine. However, all compilers use the same
small family of helper functions, defined in Cor.h, to do this task –

• CorSigCompressData / CorSigUncompressData
• CorSigCompressSignedInt / CorSigUncompressSignedInt
• CorSigCompressToken / CorSigUncompressToken

In order to uncompress a value in a Signature, you must know (from its position in
the Signature) whether to call CorSigUncompressData, CorSigUncompressSignedInt
or CorSigUncompressToken

Signatures include two modifiers called:

• ELEMENT_TYPE_BYREF – such an element points to a data item which may be
allocated from the GC heap, or from elsewhere. It may point to the start of
an object, or to the interior of an object. Either way, the GC is notified of its
existence; if it actually points into the heap, then GC knows to update its
value if it moves the object pointed-to during a garbage collection. This
modifier can only occur in the definition of Param (section 10.10) or RetType
(section 10.11). It may not occur within the definition of a Field (section
10.4) [conceptually you could imagine a runtime that did support BYREF
fields, but ours doesn’t – BYREFs, especially those that point into the interior
of an object in the GC heap, are expensive to track – since there’s no very
strong requirement for BYREF fields, we excluded them]

• ELEMENT_TYPE_PTR – such an element points to a data item which is not
allocated from the GC heap. The GC is not notified of its existence. This
modifier can occur in the definition of Param (section 10.10) or RetType
(section 10.11) or Field (section 10.4)

10.1 MethodDefSig
A MethodDefSig is indexed by the Method.Signature column. It captures the
signature of a method or global function. The syntax chart for a MethodDefSig looks
like this:

Metadata API

Page 112

This chart uses the following abbreviations:

• HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
• EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
• DEFAULT for IMAGE_CEE_CS_CALLCONV_DEFAULT
• VARARG for IMAGE_CEE_CS_CALLCONV_VARARG

The first byte of a Signature is composed of two nybbles: the high nybble holds the
HASTHIS or EXPLICITTHIS (or no) modifier; the low nybble holds the calling
convention – DEFAULT or VARARG. (Strictly speaking, a compiler composes the
value as described, but then calls the CorSigCompressData helper function in Cor.h
to compress it into 1, 2 or 4 bytes, as required – with the definitions in force today,
this always results in a 1-byte item)

ParamCount is an integer that holds the number of parameters (0 or more). It can
be any number between 0 and 0x1FFF.FFFF The compiler compresses it too, using
CorSigCompressData, before storing into the blob (ParamCount counts just the
method parameters – it does not include the method’s return type)

The RetType item describes the type of the method’s return value (see later)

The Param item describes the type of each of the method’s parameters (see later).
There must be ParamCount instances of the Param item.

10.2 MethodRefSig
A MethodRefSig is indexed by the MemberRef.Signature column. This provides the
callsite Signature for a method. Normally, this callsite Signature must match exactly
the Signature specified in the definition of the target method. For example, if a
method Foo is defined that takes two uint32s and returns void; then any callsite
must index a signature that takes exactly two uint32s and returns void. In this case,
the syntax chart for a MethodRefSig is identical with that for a MethodDefSig – see
section 10.1

The Signature at a callsite differs from that at its definition, only for a method with
the VARARG calling convention. In this case, the callsite Signature is extended to
include info about the extra VARARG arguments (for example, corresponding to the
“...” in C syntax). The syntax chart for this case is:

MethodDefSig

HASTHIS EXPLICITTHIS DEFAULT

VARARG

ParamCount

RetType Param

Metadata API

Page 113

This chart uses the following abbreviations:

• HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
• EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
• VARARG for IMAGE_CEE_CS_CALLCONV_VARARG
• SENTINEL for ELEMENT_TYPE_SENTINEL

This starts just like the MethodDefSig for a VARARG method (see section 10.1). But
we then append an ELEMENT_TYPE_SENTINEL token, followed by extra Param items
to describe the extra VARARG arguments. Note that the ParamCount item must tell
us the total number of Param items in the Signature – so it includes items both
before and after the SENTINEL byte.

In the unusual case that a callsite supplies no extra arguments, the signature should
not include a SENTINEL (this is the route shown by the lower arrow that bypasses
SENTINEL and goes to the end of the MethodRefSig definition)

10.3 StandAloneMethodSig
A StandAloneMethodSig is indexed by the StandAloneSig.Signature column. It is
typically created as preparation for executing a calli instruction. It is very similar to
a MethodRefSig, in that it represents a callsite signature, but its calling convention
may specify an unmanaged target (the calli instruction invokes either managed, or
unmanaged code). Its syntax chart looks like this:

MethodRefSig (in case where it differs from MethodDefSig)

HASTHIS EXPLICITTHIS VARARG ParamCount

RetType Param SENTINEL Param

Metadata API

Page 114

This chart uses the following abbreviations:

• HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
• EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
• DEFAULT for IMAGE_CEE_CS_CALLCONV_DEFAULT
• VARARG for IMAGE_CEE_CS_CALLCONV_VARARG
• C for IMAGE_CEE_CS_CALLCONV_C
• STDCALL for IMAGE_CEE_CS_CALLCONV_STDCALL
• THISCALL for IMAGE_CEE_CS_CALLCONV_THISCALL
• FASTCALL for IMAGE_CEE_CS_CALLCONV_FASTCALL
• SENTINEL for ELEMENT_TYPE_SENTINEL

(Note that FASTCALL is defined only as a placeholder for the future; the CLR does
not support Fast calls in V1)

This is the most complex of the various method signatures. We have combined two
separate charts into one, using shading. Thus, for the following calling conventions:

DEFAULT (managed)
STDCALL, THISCALL and FASTCALL (unmanaged)

the signature ends just before the SENTINEL item (these are all non vararg
signatures). However, for the managed and unmanaged vararg calling conventions:

VARARG (managed)
C (unmanaged)

the signature can include the SENTINEL and final Param items (it doesn’t have to).
These options are what is intended by the shading of boxes in the syntax chart

StandAloneMethodSig

HASTHIS EXPLICITTHIS DEFAULT ParamCount

RetType Param SENTINEL Param

VARARG

C

STDCALL

THISCALL

FASTCALL

Metadata API

Page 115

10.4 FieldSig
A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature
column (in the case where it specifies a reference to a field, not a method, of
course). The Signature captures the field’s definition. The field may be a static or
instance field in a class, or it may be a global variable. The syntax chart for a
FieldSig looks like this:

This chart uses the following abbreviations:

• FIELD for IMAGE_CEE_CS_CALLCONV_FIELD

CustomMod is defined in section 10.7. Type is defined in section 10.12

10.5 PropertySig
A PropertySig is indexed by the Property.Type column. It captures the type info for
a Property – that’s to say:

• how many parameters are supplied to its setter or getter methods
• the base type of the Property – the type returned by its getter method
• type info for each parameter in its setter or getter methods – that’s to say,

the index parameters

Note that there is no requirement that a Property have setter, getter or other
methods (though having none amounts to useless construct). So the signature
supplied must be syntactically valid, and should follow the suggestions above.
However, this is not checked or enforced. The Property signature may be used by
browsers, compilers or other tools, but is not used by the CLR itself.

The syntax chart for a PropertySig looks like this:

FieldSig

FIELD

PropertySig

PROPERTY Type ParamCount Param

TypeCustomMod

Metadata API

Page 116

This chart uses the following abbreviations:

• PROPERTY for IMAGE_CEE_CS_CALLCONV_PROPERTY

Type specifies the type returned by the Getter method for this property. Type is
defined in section 10.12. Param is defined in section 10.10

ParamCount is an integer that holds the number of index parameters in the setter or
getter methods (0 or more). It can be any number between 0 and 0x1FFF.FFFF
The compiler compresses it, using CorSigCompressData, before storing into the blob
(it almost inevitably ends up as a single byte) (ParamCount counts just the method
parameters – it does not include the method’s base type of the Property -- often
termed the this pointer)

10.6 LocalVarSig
A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the
type of all the local variables in a method. Its syntax chart looks like this:

This chart uses the following abbreviations:

• LOCAL_SIG for IMAGE_CEE_CS_CALLCONV_LOCAL_SIG
• BYREF for ELEMENT_TYPE_BYREF

Constraint is defined in section 10.9 Type is defined in section 10.12

Count is an unsigned integer that holds the number of local variables. It can be any
number between 1 and 0xFFFE. The compiler compresses it, using
CorSigCompressData, before storing into the blob (it almost always compresses into
one byte)

There must be Count instances of the Constraint*/BYREF?/Type chain in the
LocalVarSig

A LocalVarSig is created by Compilers and other code generators. For example,
ILASM generates a LocalVarSig in response to the .locals directive

10.7 CustomMod
The CustomMod (custom modifier) item in Signatures has a syntax chart like this:

LocalVarSig

LOCAL_SIG BYREFCount Constraint Type

Metadata API

Page 117

This chart uses the following abbreviations:

• CMOD_OPT for ELEMENT_TYPE_CMOD_OPT
• CMOD_REQD for ELEMENT_TYPE_CMOD_REQD

The CMOD_OPT or CMOD_REQD value is compressed using CorSigCompressData –
their values today are small numbers, so they always compress to a single byte.

Be careful not to confuse “Custom Modifiers” with “Custom Attributes”. Both terms
are used, but refer to totally different items: a custom modifier occurs as a particular
item within a signature blob – as its name suggest, it modifies the meaning of the
signature. On the other hand, a custom attribute describes a runtime object that is
hung off another object, method, field, etc – custom attributes are stored within
metadata as blobs with their own detailed layout (see section 11)

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row
in the TypeDef table or the TypeRef table. However, these tokens are encoded and
compressed – see section 10.8 for details

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely
ignore it entirely. Conversely, if the CustomModifier is tagged CMOD_REQD, any
importing compiler must ‘understand’ the semantic implied by this CustomModifier in
order to reference the surrounding Signature.

A typical use for a CustomModifier is for VISUAL C++. NET to denote a method
parameter as const. It does this using a CMOD_OPT, followed by a TypeRef to
Microsoft.VisualC.IsConstModifier (defined in Microsoft.VisualC.DLL)

VISUAL C++ .NET also uses a CustomModifier (embedded within a RetType – see
section 10.11) to mark the native calling convention of a function. Of course, if that
routine is implemented as managed code, this info is not used. But if it turns out to
be implemented as unmanaged code, it becomes crucial, so that automatically
generated thunks marshal the arguments correctly. This technique is used in IJW
(“It Just Works”) scenarios. Strictly speaking, such a custom modifier does not apply
only to the RetType, it really applies to the whole function. However, attaching it to
the RetType proved a convenient carrier. In these cases, the TypeRef following the
CMOD_OPT is to one of CallConvCdecl, CallConvStdcall, CallConvThiscall or
CallConvFastcall. These are all defined in the namespace
System.Runtime.InteropServices. Finally, note that CallConvFastcall is defined only
as a placeholder for the future; the CLR does not support Fast calls in V1.

10.8 TypeDefEncoded and TypeRefEncoded
These items are compact ways to store a TypeDef or TypeRef token in a Signature.

CustomMod

CMOD_OPT

CMOD_REQD

TypeDefEncoded

TypeRefEncoded

Metadata API

Page 118

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 tells
us this is a TypeRef token (see the CorTokenType enum in CorHdr.h). The lower 3
bytes (0x000012) index row number 0x12 in the TypeRef table

The encoded version of this TypeRef token is made up as follows:

a) encode the table that this token indexes as the least significant 2 bits. The bit
values to use are defined in Cor.h, as follows:

const static mdToken g_tkCorEncodeToken[4] = {mdtTypeDef,
mdtTypeRef, mdtTypeSpec, mdtBaseType};

b) shift the 3-byte row index (0x000012 in our example) left by 2 bits and OR into
the 2-bit encoding from step a)

c) call CorSigCompressData on the resulting value

For our example, we end up with the following encoded value:

a) encoded = g_tkCorEncodToken[1] = 0b0001

b) encoded = (0x000012 << 2) | 0x01

 = 0x48 | 0x01

 = 0x49

c) encoded = CorSigCompressData (0x49)

 = 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4
bytes of space in the Signature blob, we encode it as a single byte.

Note that there are two helper functions in Cor.h – CorSigCompressToken and
CorSigUncompressToken that combine these steps together (encoding the target
table type and compressing)

10.9 Constraint
The Constraint item in Signatures currently has only one possible value –
ELEMENT_TYPE_PINNED, which specifies that the target type is pinned in the
runtime heap, and will not be moved by the actions of garbage collection. Note that
the Compiler calls CorCompressData to compress the value for Modifier before
inserting into the Signature blob; but today’s value is small enough that it
compresses to a single byte.

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of
the local variable must either be a reference type (in other words, it points to the
actual variable – for example, an Object, or a String); or it must include the BYREF
item. The reason is that local variables are allocated on the runtime stack – they are
never allocated from the runtime heap; so unless the local variable points at an
object allocated in the GC heap, pinning makes no sense.

[Note: in previous versions, Constraint could also include a VOLATILE value.
However, this constraint was removed from the Signature – compilers instead issue
MSIL instructions that indicate the target variable is volatile]

10.10 Param
The Param (parameter) item in Signatures has a syntax chart like this:

Metadata API

Page 119

This chart uses the following abbreviations:

• BYREF for ELEMENT_TYPE_BYREF
• TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF

CustomMod is defined in section 10.7. Type is defined in section 10.12

A TYPEDBYREF is a simple structure of two DWORDs – one indicates the type of the
parameter, the other, its value. This struct is pushed on the stack by the caller. So,
only at runtime, is the type of the parameter actually provided. TYPEDBYREF was
originally introduced to support VB’s “refany” argument-passing technique

10.11 RetType
The RetType (return type) item in Signatures has a syntax chart like this:

RetType is identical to Param except for one extra possibility, that it can include the
type VOID. This chart uses the following abbreviations:

• BYREF for ELEMENT_TYPE_BYREF
• TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (see section 10.10)
• VOID for ELEMENT_TYPE_VOID

CustomMod is defined in section 10.7. Type is defined in section 10.12

Note that a CustomMod is used by the VC compiler to record the native calling
convention of the method – see section 10.7.

Param

BYREFCustomMod Type

TYPEDBYREF

RetType

BYREFCustomMod Type

TYPEDBYREF

VOID

Metadata API

Page 120

10.12 Type
The Type item in Signatures can be quite complicated. Below is a simple EBNF
grammar for Type. As usual, “|” separates alternatives, “*” denotes zero or more
occurrences, “?” denotes zero or one occurrence. Note that the last three
productions are all recursive: PTR and SZARRAY are left-recursive, whilst ARRAY is
right-recursive.

Type := Intrinsic
| VALUETYPE TypeDefOrRefEncoded
| CLASS TypeDefOrRefEncoded
| STRING
| OBJECT
| PTR CustomMod* VOID
| PTR CustomMod* Type
| FNPTR MethodDefSig
| FNPTR MethodRefSig
| ARRAY Type ArrayShape
| SZARRAY CustomMod* Type

For compactness, we have missed out the ELEMENT_TYPE_ prefixes in this list. So,
for example, “CLASS” is shorthand for ELEMENT_TYPE_CLASS (see the
CorElementType enum defined in CorHdr.h)

10.12.1 Intrinsic
This represents the set of simple value types provided by the runtime. They are
defined as follows:

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U

However, CLS does not support this full range of intrinsic types – it excludes those in
listed in the CLS rule below

10.12.2 ARRAY Type ArrayShape
The ARRAY production describes the most general definition of an array – multi-
dimensional, specifying size and lower bounds for each dimension.

10.12.3 SZARRAY CustomMod* Type
The SZARRAY production describes a frequently-used, special-case of ARRAY – that’s
to say, a single-dimension (rank 1) array, with a zero lower bound, and no specified
size

10.13 ArrayShape
An ArrayShape has the following syntax chart:

Metadata API

Page 121

Rank is an integer (compressed using CorSigCompressData) that specifies the
number of dimensions in the array (must be 1 or more). NumSizes is a compressed
integer that says how many dimensions have specified sizes (it must be 0 or more).
Size is a compressed integer specifying the size of that dimension – the sequence
starts at the first dimension, and goes on for a total of NumSizes items. Similarly,
NumLoBounds is a compressed integer that says how many dimensions have
specified lower bounds (it must be 0 or more). And LoBound is a compressed integer
specifying the lower bound of that dimension – the sequence starts at the first
dimension, and goes on for a total of NumLoBounds items. Note that you cannot
‘skip’ dimensions in these two sequences – but you are allowed to specify less than
all Rank dimensions. Here are a few examples, all for element type I4:

 Type Rank NumSizes Size* NumLoBounds LoBound*

[0..2] I4 1 1 3 0

[,,,,,,] I4 6 0

[0..3, 0..2,,,,] I4 6 2 4 3 0

[1..2, 6..8] I4 2 2 2 3 2 1 6

[5, 3..5, ,] I4 3 2 5 3 2 0 3

Note that definitions can nest, since the Type may itself be an array

10.14 Short Form Signatures
The general specification for signatures leaves some leeway in how to encode certain
items. For example, it appears legal to encode a String as either

• long-form: (ELEMENT_TYPE_CLASS, TypeRef-to-System.String)
• short-form: ELEMENT_TYPE_STRING

Only the short form is valid. Below is a list of all possible long-form and short-form
items. (As usual, for compactness, we miss out the ELEMENT_TYPE_ prefix – so
VALUETYPE is short for ELEMENT_TYPE_VALUETYPE)

ArrayShape

NumSizes Rank Size LoBound NumLoBounds

Metadata API

Page 122

Note: arrays must be encoded in signatures using one of ELEMENT_TYPE_ARRAY or
ELEMENT_TYPE_SZARRAY. There is no long form involving a TypeRef to
System.Array

 Long Form Short Form

Prefix TypeRef to:

CLASS System.String STRING
CLASS System.Object OBJECT
VALUETYPE System.Void VOID
VALUETYPE System.Boolean BOOLEAN
VALUETYPE System.Char CHAR
VALUETYPE System.Byte U1
VALUETYPE System.SByte I1
VALUETYPE System.Int16 I2
VALUETYPE System.UInt16 U2
VALUETYPE System.Int32 I4
VALUETYPE System.UInt32 U4
VALUETYPE System.Int64 I8
VALUETYPE System.UInt64 U8
VALUETYPE System.IntPtr I
VALUETYPE System.UIntPtr U
VALUETYPE System.TypedReference TYPEDBYREF

Metadata API

Page 123

11 Attributes
Programmers can attach “custom attributes” to a programming element, such as a
method or field. Each such “custom attribute” is defined, by the programmer, as a
regular Type to metadata.

A “custom attribute” within metadata is a triple of (tokenParent, tokenMethod, blob)
stored into metadata. The blob holds the arguments to the class constructor method
specified by tokenMethod. The runtime (strictly speaking, Reflection) has a full
understanding of the contents of this blob; on request, it will instantiate the
AttributeObject that the blob represents, attaching it to the item whose token is
tokenParent.

11.1 Using Attributes
There are two steps in defining and using new Attributes. First, the programmer
defines an AttributeClass, and the language emits that definition into the metadata,
just as it would for any regular class. Here is an example of defining an
AttributeClass, called Who, in C#:

public class Who {
 string name;
 string date;
 public Who(string n, string d) {name = n; date = d;}
}

Second, the programmer defines an instance of that AttributeClass (let’s call it an
AttributeObject) and attaches it to some programming element. Here is an example
of defining two Who AttributeObjects and attaching them to the classes, Television
and Refrigerator. Note that we define the AttributeObjects by providing literal string
arguments to the Who constructor method:

[Who(“Joe”, “Jan-2001”)] class Television { . . . }

[Who(“Bill”, “Dec-2000”)] class Refrigerator { . . . }

At runtime, you can instantiate the corresponding Who AttributeObjects, using
Reflection. Here’s the code for Television’s Who:

System.Reflection.MemberInfo mi = typeof(Television);

object[] atts = mi.GetCustomAttributes(typeof(Who));

Who wt = (Who)atts[0];

Note that AttributeClasses are not distinguished in any way by the runtime – their
definition within metadata looks just like any regular Type definition. Our use
therefore of the name “AttributeClass” rather than just “Class” is simply aimed to
help understanding. (CLS and .net framework impose restrictions in their design
patterns, insisting that AttributeClasses all descend from System.Attribute, but the
CLR itself does not care).

AttributeObjects can be attached to any item that has a metadata token: mdField,
mdTypeDef, mdTypeRef, mdMethod, mdParameter, etc. Duplicates are supported,
such that a given programming element may well have multiple AttributeObjects of
the same AttributeClass attached to it. [so, in the example above, class Television
might have two Who AttributeObjects – if the Television class were jointly invented
by “Joe” and “Mary”]

Metadata API

Page 124

It is legal to attach an AttributeObject to an AttributeClass. But we disallow
attaching an AttributeObject to an AttributeObject.

AttributeClasses have the following characteristics:

• Require up-front design before AttributeObjects can be emitted
• Capitalize on the runtime infrastructure for class identity, structure, and

versioning
• Allow tools, services, and third parties (the primary customers for this

mechanism) to extend the types of information that may be carried in metadata
without having to depend on the runtime to maintain and version that
information

• Although each language or tool will provide a language-specific syntax and
conventions for using Attributes, the self-describing nature of these Attributes will
enable tools to provide drop-down lists and other developer aids

• Runtime Reflection support browsing over these Attributes, since they are self-
describing.

11.2 Persisted Format of an AttributeObject
The data required to instantiate an AttributeObject is saved into metadata in three
parts:

• Prolog
• Constructor arguments
• Named Fields or Properties

Each separate constructor argument, named field and named property is written into
metadata using the same format (nearly) as used by the .NET binary serializer. [We
make a few optimizations that avoid repeating information that already exists
elsewhere in the metadata]

We define the format of these ‘pickled’ AttributeObjects, for only a subset of
argument types – ints, chars, strings, and so on (see later).

It might help to have an example in mind, as we discuss the formats. Here is a
simple one, written in C#

public class Attrib {
 public readonly string Name;
 public object Whim;
 public int Depth { get{...}; set{...} }
 public Attrib(string n) { this.Name = n; }
 public Attrib(string n, int d) { this.Name = n; this.Depth = d; }
}
[Attrib(“Monday”)] class Ex1 { ... }
[Attrib(“Tuesday”, 2)] class Ex2 { ... }
[Attrib(“Friday”, Whim=42] class Ex3 { ... }
[Attrib(“Green”, Depth=3, Whim=”yellow”) class Ex4 { ... }

This example defines an AttributeClass called Attrib, with two fields – Name and
Whim, and one property, Depth. It defines two constructors – the first takes one
argument; the second takes two.

Following the definition of Attrib we show it used to attribute four classes called Ex1
through Ex4. Ex1 is hooked to an Attrib object using the single-argument
constructor. Ex2 is hooked to an Attrib object using the two-argument constructor.

Metadata API

Page 125

Ex3 is hooked to an Attrib object using a constructor which takes the one-argument
constructor, and sets the named field Whim. The outcome of this is to instantiate an
Attrib object with Name of “Friday” and Whim (an object field) holding the integer
value 42. Finally, Ex4 is hooked to an Attrib object using the one-argument
constructor, augmented by values for the Depth property and the Whim field.

Note that any class may have multiple AttributeObjects ‘hooked’ to it. These can be
of different types, or even of the same type.

All binary data is persisted in little-endian format (least signficant bytes come first
in the file). The format for floats and doubles is IEEE-754. For 8-byte doubles, the
more-significant 4 bytes is emitted after the less-significant 4 bytes. There is just
one exception to the little-endian rule – the “PackedLen” count that precedes a string
– a one-two-or-four byte item – is always encoded big-endian.

Note that, if the constructor method takes no arguments, and you don’t want to
specify any extra named fields or properties, you can omit the blob entirely.

11.3 Prolog
The prolog simply identifies the blob that follows. It consists of a two-byte ID. In
the first release, set this to the value 1.

The prolog is obviously a hedge against future extensions to this blob format.

11.4 Constructor Arguments
We define a new enumeration, SERIALIZATION_TYPE_, which specifies the types of
data item in the blob. Where members correspond directly to runtime
ELEMENT_TYPE_’s, we use the same name and value. Where members correspond
to specific serialization types, we choose a value beyond the range used by the
ELEMENT_TYPE_ enum. (See later for detailed list)

This spec provides a blow-by-blow account of how to serialize the following subset:

SERIALIZATION_TYPE_BOOLEAN SERIALIZATION_TYPE_CHAR
SERIALIZATION_TYPE_I1 SERIALIZATION_TYPE_U1
SERIALIZATION_TYPE_I2 SERIALIZATION_TYPE_U2
SERIALIZATION_TYPE_I4 SERIALIZATION_TYPE_U4
SERIALIZATION_TYPE_I8 SERIALIZATION_TYPE_U8
SERIALIZATION_TYPE_R4 SERIALIZATION_TYPE_R8
SERIALIZATION_TYPE_STRING SERIALIZATION_TYPE_TYPE
SERIALIZATION_TYPE_FIELD SERIALIZATION_TYPE_PROPERTY

Also, a one-dimensional, zero-based array (SZARRAY) of any of those types.

The signature for any class constructor is stored in metadata, and indexed via its
MethodDef. This signature specifies the number, order and type of each parameter.
Therefore, we store the actual arguments into the PE file as dense binary, with no
type descriptions and with no alignment packing. For each argument, emit the
following data:

• For BOOLEAN, a single bytes, with False = 0 and True = 1
• For the intrinsics CHAR thru R8 in the table above, just their value (in their

full field width)
• For STRING, a count of the number of bytes in the string (after encoding)

followed immediately by the characters of the string in UTF8 format. (The

Metadata API

Page 126

count is encoded as a “PackedLen” – see below details) Note that the count
represents the overall length, in bytes, of the UTF8 sequence. In general,
this is not the same as the number of UTF8 characters, since different UTF8
characters can occupy between 1 and 3 bytes

• For TYPE, a string that describes the type – see later for details
• For TAGGED_OBJECT,
• For ENUM, the actual value of its underlying type. [As a specific example, a

particular Enum might use 4-byte integers as its underlying type, and should
therefore be saved as a SERIALIZATION_TYPE_I4 value]

• For SZARRAY, the number of elements as an I4, followed by the value (in its
full field width) of each element

If the AttributeClass provides several constructors, overload resolution to the
appropriate MethodDef or MethodRef must be done at compile time (ie, no late-
binding). This design does not perform automatic widening when we instantiate an
AttributeObject via Reflection (for example, store 16 bit integer, but widen to
signature’s parameter type of 32 bits)

For the length-in-bytes of a UTF8 string, we use the standard 1,2 or 4 byte
“PackedLen” encoding used within metadata (see the description of helper routine
CorSigCompressData in section 10):

• If the length-in-bytes lies between 0 (0x00) and 127 (0x7F), inclusive,
encode as a one-byte integer (bit #7 is obviously clear, integer held in bits #6
thru #0)

• If the length-in-bytes lies between 2^8 (0x80) and 2^14 – 1 (0x3FFF),
inclusive, encode as a two-byte integer with bit #15 set, bit #14 clear
(integer held in bits #13 thru #0)

• Otherwise, encode as a 4-byte integer, with bit #31 set, bit #30 set, bit #29
clear (integer held n bits #28 thru #0)

• A null string should be represented with the reserved single byte 0xFF, and no
following data. (The value of 0xFF is a reserved value in metadata’s count
prefix)

The table below shows several examples. The first column shows an example count
value (one-byte, two-byte and three-byte). The second column shows the
corresponding size, expressed as a normal integer.

The table below shows several examples. The first column gives a value, expressed
in familiar (C-like) hex notation . The second column shows the corresponding,
compressed result, as it would appear in a PE file, with successive bytes of the result
lying at successively higher byte offsets within the file. (This is the opposite order
from how regular binary integers are laid out in a PE file)

Original Value Compressed Representation

0x03 03

0x7F 7F (7 bits set)

0x80 8080

0x2E57 BE57

0x3FFF BFFF

0x4000 C000 4000

0x1FFF FFFF DFFF FFFF

Metadata API

Page 127

Thus, by examining the most significant bits (the first ones encountered in a PE file)
of a “compressed” field, you can determine whether it occupies 1, 2 or 4 bytes, as
well as its value. For this to work, the “compressed” value, as explained above, is
stored in big-endian order - most significant byte at the smallest offset within the
file.

There is clearly scope to compact the above binary format, in the same way that
existing metadata structures have been optimized to avoid “bloat”. Possible
techniques are legion. The first release of the runtime does not include any such
optimizations (except for “PackedLen”)

11.5 Constructor Arguments – Example 1
Foo (int a, char[] b, String c);

int a = 7;

char[] b = new char[] {‘A’, ‘B’, ‘C’, ‘D’};

String c = “Today”;

Foo (a, b, c);

Note that this example snippet uses a language that stores each ”char” as a two-
byte Unicode character (contrast with C++ single-byte “char”). The arguments to
the Foo constructor would be encoded as follows:

0100 07000000 04000000 41424344 05 546F646179 0000

We start with the Prolog – a 2-byte value of 1. Next comes the first argument – a
4-byte value of 7. The second argument, a 4-element char array, is represented by
a 4-byte count-of-array-elements with value 4, followed by the four ASCII characters
A thru D (each “char” element starts as a 2-byte Unicode value, but is compressed
into a single byte when converted into Utf8). The third argument consists of the
UTF8-encoded string “Today”; its length in bytes (5) fits into a single count byte,
followed by 5 characters, each encoded into a single byte. [I have added whitespace
for clarity – it’s not really there of course]). The last value is a two-byte value of
zero, giving the total number of named fields and named properties (see later).
Note that the display of bytes is the same as they would appear in memory – each
byte occupies the next highest address in memory.

Note that you can specify an array of length zero – simply provide the 4-byte count-
of-array-elements as 0x00000000. (Technically, this is different from a null array –
we don’t specify an encoding for this case)

11.6 Constructor Arguments – Example 2
Enum Colors {Red, Green, Blue};

Bar (object a, Colors b, bool[] c);

object a = “Hello”;

Colors b = Colors.Green;

bool[] b = new bool[] {false, true, true};

Metadata API

Page 128

Bar (a, b, c);

The arguments to the Bar constructor would be encoded as follows:

0100 0E 05 48656C6C6F 01000000 03000000 00 01 01 0000

The Prolog is followed by the first argument, a 1-byte ELEMENT_TYPE_STRING
(0x0E) followed by 5-byte string for “Hello” – a one-byte count, plus 5 bytes of UTF8
encoded characters. (Note that Reflection knows from the signature for the Bar
constructor, that its first argument is an object – we need only note that this
argument is persisted as a string. The second argument is an enumeration with a 4-
byte integer base type; we serialize Green as its value (of 1). The third argument is
a 3-element BOOLEAN array – so we have a 4-byte element count with value 3,
followed by 3 bytes for each boolean value, in order (False = 0, True = 1). (Recall
that CLR BOOLEANs are stored with one byte per element). The last value is a two-
byte value of zero, giving the total number of named fields and named properties
(see later)

11.7 Constructor Arguments – Example 3
Zog (Object[] a, short[] b);

Object[] a = new Object[] {123, “Hello”, 11.0};

short[] b = new short[] {42, 7};

Zog (a, b);

Note: this example is contrived – I can’t find a CLR language that lets me do this,
but if you can, then the blob it emits should be as follows:

0100 03000000 08 7B000000 0E 05 48656C6C6F 0D BA5E353F40100C49
02000000 2A00 0700
0000

The first argument is an object array with 3 elements; so we start with a 4-byte
element count with value 3. Element 0 of the object array is an integer, which is
encoded with a single-byte tag value of 08 (SERIALIZATION_TYPE_I4), followed by
its 4-byte value (123 decimal, 7B hex). Element 1 of the object array is a String,
encoded with a single-byte tag value of 0E (SERIALIZATION_TYPE_STRING), and
followed by the byte-count of 05 and the UTF8 string for “Hello”. Element 2 of the
object array is a double, so it starts with a single-byte tag value 0D
(SERIALIZATION_TYPE_R8), and follows with the 8-byte binary floating-point
representation for 11.0

The second argument is an array of 2 shorts. We start with a 4-byte count of
elements. Then follows two shorts – 42 decimal (2A hex) and 7 decimal. The last
value is a two-byte value of zero, giving the total number of named fields and named
properties (see later).

11.8 Constructor Arguments – Example 4
An Attribute constructor may have an System.Type argument. In this case, the
Attribute blob should contain the stringified, fully-qualified name of the target type.
For example:

MyAttrib(Type t);

Metadata API

Page 129

MyAttrib (typeof(System.Diagnostics.StackFrame));

The argument is persisted as a UTF8 string, described in previous examples. The
format matches that of Reflection’s AssemblyName. In this case, the string that’s
persisted is: “mscorlib, System.Diagnostics.StackFrame”

11.9 Named Fields and Properties
Named fields and properties are optional components for specifying an
AttributeObject. We allow them to be specified in any order (languages may choose
to impose tighter constraints). Therefore, the persisted blob defines each named
field or property by recording a quad giving {FieldOrProperty, name, type, value}, in
the obvious way.

We include Field-or-Property, as well as type, so that we can, at instantiation time,
perform overload resolution of the named field or property.

We start with a 2-byte count specifying the total number of named fields and
properties to follow. This count must always be supplied – if there are no named
fields or properties for this AttributeObject, the count must be zero.

Whether each item is a field or property is specified with the one-byte tag
SERIALIZATION_TYPE_FIELD or SERIALIZATION_TYPE_PROPERTY. The field or
property name is encoded as a string – compacted byte-count plus UTF8 sequence.
The type is encoded as its corresponding SERIALIZATION_TYPE_ member. Its value
is similarly encoded exactly as described already.

11.10 Named Field – Example
using System;
using System.Reflection;
public class Who : Attribute {
 public string name;
 public string date;
 public string comment;
 public Who(string n, string d) {name = n; date = d;}
}
[Who("Joe", "Jan-2001", comment="Revisit")]
class Television { }

class Test {
 public static void Main() {
 MemberInfo mi = typeof(Television);
 object[] atts = mi.GetCustomAttributes(typeof(Who));
 Who w = (Who) atts[0];
 Console.WriteLine("w.comment = " + w.comment);
 }
}

The arguments to the Attrib constructor would be encoded as follows:

Metadata API

Page 130

0100 // prolog
03 4a6f65 // “Joe”
08 4a616e2d32303031 // “Jan-2001”
0100 // number of ‘named’ args
53 // SERIALIZATION_TYPE_FIELD
0e 07636f6d6d656e74 // “comment”
07 52657669736974 // “Revisit”

11.11 General Case (not supported in V1)
This spec documents a subset of the general .NET binary serialization format, as an
aid for compilers who wish to serialize AttributeObjects ‘by-hand’. So, the format
for saving AttributeObjects is piece-wise identical to the format used by CLR
serialization to persist objects. That’s to say, if you look at the binary layout for any
constructor argument, it is identical (ok, we’ve included a couple of optimizations) to
how it would look in a binary-serialized stream.

[The general-case serialized object includes extra fields. For example, each
serialized object is assigned an ObjectID to support references to it from other
objects in the graph. This is omitted for Strings in the serialized constructor
arguments]

So, what if an attribute-class actually defined an argument of some user-defined
class, Quix? How does the general serialized format look? The answer is, as you
would expect, that the Quix object, as an argument to the attribute-class
constructor, is persisted into the metadata, in the same format as if it had been
instantiated as a regular common type system object and serialized.

Suppose the following example:

public class Attrib : System.Attribute {
 public readonly string Name;
 public Attrib(string n, Quix q) { . . . }
}
// Instantiate and setup aQuix
[Attrib(“Friday”, aQuix)] class Ex5 { . . . }

The arguments to the Attrib constructor would be encoded as follows:

0100 06 467269646179 0100 11

We start with the Prolog – a 2-byte with value 1. Next comes the first argument –
the String “Friday”. Next we have the serialized aQuix –
SERIALIZATION_TYPE_CLASS, then the binary blob for its field values.

Serializing arbitrary object graphs is clearly more complex than the subset of cases
we have described above. Whilst the general case is addressed in the Spec for
Binary Format Serialization, we will call out one aspect, that could arise in this last
example. The Attrib constructor expects a Quix object; however, at compile time, it
could be given an instance of a class derived from Quix. In this case, we need to
include instance-type information, rather than just declaration-type information.

11.12 Arguments of type “Type”
As noted above, it is possible for a user to define an attribute constructor method
that takes an argument of type “Type”. What is stored into the custom attribute

Metadata API

Page 131

blob is a “stringified” representation of the type’s name. This section details that
format.

Note that it is the Reflection component of the CLR that understands and uses
custom attribute blobs at runtime, in order to instantiate AttributeObjects. The
format of the type string is therefore made to agree with regular Reflection
conventions.

The format, inside a custom attribute blob, for a .ctor argument of type
System.Type, is a string that contains the fully-qualified name of the type.
Prototypically – “Ozzy.OutBack.Kangaroo+Wallaby, MyAssembly”

However, Reflection, under certain conditions, tolerates a less-than-fully-qualified
name: if you supply less info, Reflection will conduct a search for the Type string you
provide. Here are the rules Reflection follows --

• You must always specify full namespace and name -- eg "a.b.c" If that's all
you specify, Reflection looks for "a.b.c" throughout all the modules that
comprise the current assembly (where "current" is the one that contains the
CA blob we are parsing). If we find "a.b.c" in the current assembly, we're
done. If not, then, as a special case, we look in MSCORLIB.DLL

• If the target Type (eg "x.y.z") is defined in a different assembly from the
current one, and from MSCORLIB.DLL, then you must specify the full type
name and assembly -- eg "x.y.z, MyAssembly"

• You can add even more info, to control exact versions, locale, etc -- in
addition to the "x.y.z, MyAssembly". For example:

x.y.z, MyAssembly, SN=a5d015c7d5a0b012, Loc=en, Ver=1.2.3.4

• If the target Type is an array, then emit the array dimensions in the opposite
order from how they are represented in typical high-level languages. For
example, if the user declares an array: int32 [,,,,] [] [,,] then it should be
emitted into the custom attribute blob with dimensions backwards – that’s to
say: int32 [,,][][,,,,]

(Note, in particular, that there's never any need to specify which module within an
assembly holds the Type you're interested in)

11.13 SERIALIZATION_TYPE_ enum
SERIALIZATION_TYPE_BOOLEAN = ELEMENT_TYPE_BOOLEAN
SERIALIZATION_TYPE_CHAR = ELEMENT_TYPE_CHAR
SERIALIZATION_TYPE_I1 = ELEMENT_TYPE_I1
SERIALIZATION_TYPE_U1 = ELEMENT_TYPE_U1
SERIALIZATION_TYPE_I2 = ELEMENT_TYPE_I2
SERIALIZATION_TYPE_U2 = ELEMENT_TYPE_U2
SERIALIZATION_TYPE_I4 = ELEMENT_TYPE_I4
SERIALIZATION_TYPE_U4 = ELEMENT_TYPE_U4
SERIALIZATION_TYPE_I8 = ELEMENT_TYPE_I8
SERIALIZATION_TYPE_U8 = ELEMENT_TYPE_U8
SERIALIZATION_TYPE_R4 = ELEMENT_TYPE_R4
SERIALIZATION_TYPE_R8 = ELEMENT_TYPE_R8
SERIALIZATION_TYPE_STRING = ELEMENT_TYPE_STRING
SERIALIZATION_TYPE_TYPE = 0x50
SERIALIZATION_TYPE_FIELD = 0x53

Metadata API

Page 132

SERIALIZATION_TYPE_PROPERTY = 0x54

Metadata API

Page 133

12 CustomAttributes – Syntax
This section describes the layout of Custom Attribute blobs, stored in metadata, and
already described in section 11. It makes no sense unless you have read that
section (and even then).

Throughout this section, we use a shorthand: all upper-case names should be
prefixed by SERIALIZATION_TYPE_. So for example, STRING is shorthand for
SERIALIZATION_TYPE_STRING.

A Custom Attribute blob has the following syntax chart:

All binary values are stored in little-endian format (except PackedLen items – used
only as counts for the number of bytes to follow in a Utf8 string)

CustomAttribBlob starts with a Prolog – a U2, with value 0x0001

Next comes a description of the fixed arguments for the constructor method. Their
number and type can be found by examining that constructor’s MethodDef; this info
is therefore not repeated in the CustomAttribBlob itself. As the syntax chart shows,
there can be zero or more FixedArgs. (note that VARARG constructor methods are
not allowed in the definition of Custom Attributes)

Next is a description of the optional “named” fields and properties. This starts with
NumNamed – a U2 giving the number of “named” properties or fields that follow.
Note that NumNamed must always be present. If its value is zero, there are no
“named” properties or fields to follow (and of course, in this case, the CustomAttrib
must end immediately after NumNamed) In the case where NumNamed is non-zero,
it is followed by NumNamed repeats of NamedArg

CustomAttribBlob

Prolog NamedArg FixedArg

FixedArg

NumElem Elem

NumNamed

Elem

if not SZARRAY

if SZARRAY

Metadata API

Page 134

The format for each FixedArg depends upon whether that argument is single, or an
SZARRAY – this is shown in the upper and lower paths, respectively, of the syntax
chart. So each FixedArg is either a single Elem, or NumElem repeats of Elem.

NumElem is a U4 specifying the number of elements in the SZARRAY

An Elem takes one of three forms:

• if the parameter kind is simple (BOOLEAN thru R8) then the blob contains its
binary value (Val)

• if the parameter kind is STRING or TYPE, then the blob contains a SerString –
a PackedLen count of bytes, followed by the UTF8 characters. (a TYPE is
stored as a string giving the full name of that Type)

• if the parameter kind is ENUM, then the blob contains its base type (eg U2,
I4), followed by its binary value (Val)

Val is the binary value for a simple type. So a BOOLEAN is a U1 with value 0 (false)
or 1 (true); CHAR is a two-byte unicode character; I1 thru R8 all have their obvious
meaning (stored in the same byte order as held in a little-endian machine memory,
such as an x86).

A NamedArg is simply a FixedArg (discussed above) preceded by information to
identify which field or property it represents. The FieldOrPropName is that name,
stored, as usual, as a SerString.

Val

SerString

ValBaseType

Elem

BOOLEAN .. R8

STRING, TYPE

ENUM

NamedArg

FieldOrPropNameFIELD

PROPERTY

FixedArg

Metadata API

Page 135

FIELD is the single byte SERIALIZATION_TYPE_FIELD

PROPERTY is the single byte SERIALIZATION_TYPE_PROPERTY

The SerString used to encode an argument of type Type includes the namespace and
type, followed optionally by the assembly where it is defined, its version, culture and
public key token. If the assembly name is missed out, Reflection looks first in this
assembly, and then the system assembly.

Here are some examples. Each shows the (attribute) class definition, its use, and a
hex dump of the resulting blob. It also shows the text of the corresponding
SerString embedded in the blob:

class TypeAtt : Attribute { public TypeAtt(Type t) { } }

[TypeAtt(typeof(short))]

0100 // Prolog

0c // # bytes in string

53797374656d2e496e743136 // “System.Int16”

0000

class TypeAtt : Attribute { public TypeAtt(Type t) { } }

[TypeAtt(typeof(System.Drawing.Brush))]

0100 69 // Prolog

69 // # bytes in string

53797374656d2e44726177696e672e42727573682c // “System.Drawing.Brush,”

53797374656d2e44726177696e672c // “System.Drawing,”

2056657273696f6e3d312e302e323431312e302c // “ Version=1.0.2411.0,”

2043756c747572653d6e65757472616c2c // “ Culture=neutral,”

205075626c69634b6579546f6b656e3d // “ PublicKeyToken=”

62303366356637663131643530613361 // “b03f5f7f11d50a3a”

0000 // NumNamed

class TypeAtt : Attribute { public TypeAtt(Type t) { } }

[TypeAtt(typeof(int[,,,][][,]))]

0100 // Prolog

16 // # bytes in string

53797374656d2e496e743332 // “System.Int32”

5b2c5d5b5d5b2c2c2c5d // “[,][][,,,]”

0000 // NumNamed

Note in this last case that arrays must be emitted backwards compared with their
order in the source program of typical programming languages

Metadata API

Page 136

13 Marshalling Descriptor
A Marshalling Descriptor is like a signature – it’s a blob of binary data. It describes
how a field or parameter (which, as usual, covers the method return, as parameter
number 0) should be marshalled when calling to or from unmanaged coded via
PInvoke dispatch or IJW (“It Just Works”) thunking.

The blob has the following format –

MarshalSpec :==
 NativeInstrinsic
| CUSTOMMARSHALLER Guid UnmanagedType ManagedType Cookie
| FIXEDARRAY NumElem ArrayElemType
| SAFEARRAY SafeArrayElemType
| ARRAY ArrayElemType ParamNum ElemMult NumElem

NativeInstrinsic :==
 BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8
| BSTR | LPSTR | LPWSTR | LPTSTR | FIXEDSYSSTRING | STRUCT
| INTF |FIXEDARRAY | INT | UINT | BYVALSTR | ANSIBSTR | TBSTR
| VARIANTBOOL | FUNC | LPVOID | ASANY | LPSTRUCT | ERROR | MAX

For compactness, we have omitted the NATIVE_TYPE_ prefixes in the above lists.
So, for example, “ARRAY” is shorthand for NATIVE_TYPE_ARRAY (see the
CorNativeType enum defined in CorHdr.h) Note that NativeIntrinsic excludes those
elements of the CorNativeType enum commented as “deprecated”

Guid is a counted-Utf8 string – eg “{90883F05-3D28-11D2-8F17-00A0C9A6186D}”
– it must include leading { and trailing } and be exactly 38 characters long

UnmanagedType is a counted-Utf8 string – eg “Point”

ManagedType is a counted-Utf8 string – eg “System.Util.MyGeometry” – it must be
the fully-qualified name (namespace and name) of a managed Type defined within
the current assembly (that Type must implement ICustomMarshaller, and provides a
“to” and “from” marshalling method)

Cookie is a counted-Utf8 string – eg “123” – an empty string is allowed

NumElem is an integer that tells us how many elements are in the array

ArrayElemType :==
 NativeInstrinsic | BOOLEAN | I1 | U1 | I2 | U2
| I4 | U4 | I8 | U8 | R4 | R8 | BSTR | LPSTR | LPWSTR | LPTSTR
| FIXEDSYSSTRING | STRUCT | INTF | INT | UINT | BYVALSTR
| ANSIBSTR | TBSTR | VARIANTBOOL | FUNC | LPVOID | ASANY
| LPSTRUCT | ERROR | MAX

The value MAX is used to indicate “no info”

SafeArrayElemType :== I2 | I4 | R4 | R8 | CY | DATE | BSTR | DISPATCH |
| ERROR | BOOL | VARIANT | UNKNOWN | DECIMAL | I1 | UI1 | UI2
| UI4 | INT | UINT

where each is prefixed by VT_. Note that these VT_xxx form a subset of the
standard OLE constants (defined, for example, in the file WType.h that ships with
Visual Studio, installed to the default directory “Program Files\Microsoft Visual
Studion\VC98\Include”)

ParamNum is an integer, which says which parameter in the method call provides
the number of elements in the array – see below

Metadata API

Page 137

ElemMult is an integer (says by what factor to multiply – see below)

For example, in the method declaration:

Foo (int ar1[], int size1, byte ar2[], int size2)

The ar1 parameter might own a row in the FieldMarshal table, which indexes a
MarshalSpec in the Blob heap with the format:

ARRAY MAX 2 1 0

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY. There is no
additional info about the type of each element (signified by that NATIVE_TYPE_MAX).
The value of ParamNum is 2, which tells us that parameter number 2 in the method
(the one called “size1”) will tell us the number of elements in the actual array – let’s
suppose its value on a particular call were 42. The value of ElemMult is 1. The value
of NumElem is 0. The calculated total size, in bytes, of the array is given by the
formula:

if ParamNum == 0
SizeInBytes = NumElem * sizeof (elem)

else
SizeInBytes = (@ParamNum * ElemMult + NumElem) * sizeof (elem)

endif

We have used the syntax “@ParamNum” to denote the value passed in for parameter
number ParamNum – it would be 42 in this example. The size of each element is
calculated from the metadata for the ar1 parameter in Foo’s signature – an
ELEMENT_TYPE_I4 of size 4 bytes.

Note that, just as in signature blobs, every simple scalar, such as integers or Utf8
byte-counts, are stored in compressed format, using the CorSigCompressData helper
routines (see section 10 for details)

Metadata API

Page 138

14 Metadata Specific to PInvoke
Platform Invocation Services, abbreviated “PInvoke”, allows managed code to call
unmanaged functions that are implemented in a DLL. PInvoke takes care of finding
and invoking the correct function, as well as marshalling its managed arguments to
and from their unmanaged counterparts (integers, strings, arrays, structures, etc).

PInvoke was intended primarily to allow managed code to call existing, unmanaged
code, typically written in C. A good example is the several thousand functions that
comprise the Win32 API.

As mentioned above, PInvoke marshals function arguments between managed and
unmanaged code. For simple data types (bytes, integers, floats, etc), or arrays of
those simple types, marshalling is straightforward. Even for strings, so long as you
specify whether the unmanaged code expects an Ansi string, a Unicode string, or a
BSTR, marshalling is again without problems.

But marshalling of structured arguments presents a problem. (Structured types are
also known as structs, records, aggregates, etc, depending upon which source
language we are discussing. We shall call them “structs” in this spec). Given free-
rein, the runtime will lay out the fields of a managed struct in the ‘most efficient’
way. What is ‘most efficient’? Well, it includes making garbage collection fast and
space-efficient. It can also take account of access patterns. The point is, that the
runtime’s choice of layout will rarely match what unmanaged code (typically C)
expects, and has hard-wired into its machine code as fixed offsets – where fields of a
struct are laid out in the lexical order they were defined in the source code.

[As an aside, you might wonder how user’s managed code can ever ‘find’ the right
fields in a class which the runtime lays out in memory at its own whim. The answer
is that field access within MSIL is done via metadata tokens; in effect, these provide
the ‘name’ of the field to be accessed, rather than its predefined byte offset within
the managed struct]

So, somehow, at runtime, PInvoke must ‘manufacture’ and hand over a struct,
holding fields in the exact order and size that unmanaged code expects. The way it
does this is firstly to disallow runtime’s normal freedom for how it lays out managed
structs (classes or valuetypes); instead, it directs the runtime to lay the struct out in
managed memory in the way most-nearly expected by the unmananaged user of this
struct. We call such an item a “formatted type”.

For many cases, we can achieve an exact, byte-by-byte, match between the
managed object and the struct the unmanaged code expects; in these cases, we say
the managed and unmanaged struct are “isomorphic”. When PInvoke calls the
unmanaged code, it can either pin the managed object (so that it will not be moved
by garbage collection), and hand a pointer to the managed code; or it can allocate
some memory (unmanaged heap or stack) and do a fast, ‘blind’, byte-by-byte copy
from the managed isomorphic object. Either technique results in low overhead.

But there are some cases (non-isomorphic), where PInvoke must carry out
marshalling – copying and reformatting of data – at runtime. This is slower than if
the struc were isomorphic. The common cases which destroy isomorphism include:

• managed string is Unicode, but the unmanaged code expects Ansi

• managed argument or field is boolean; this occupies 1 byte in managed memory,
but 2 or 4 bytes in unmanaged structures

Metadata API

Page 139

A programmer can avoid the inefficiency incurred with managed boolean fields by
declaring them as 2-byte or 4-byte integers instead.

In all other respects, except its predefined field layout in memory, a “formatted”
object looks just like a regular managed object. In particular, managed code can
read and write all its fields with MSIL instructions.

When it comes to call an unmanaged function, PInvoke locates the DLL where it
lives, loads that DLL into process memory, finds the function address in memory,
pushes its arguments onto the stack (marshalling if required) and transfers control to
the address for the unmanaged code. If the arguments are isomorphic, then no
marshalling is required.

14.1 Overview of PInvoke Metadata
This document specifies what information a tool or compiler must emit into metadata
to describe how PInvoke should call an unmanaged function from the Runtime. This
information includes the location of the target function (which DLL it lives in) and its
signature (number of arguments, their type, and any function return type).

Each compiler provides a construct for its users to decorate methods and arguments
with the required PInvoke information. For example, Managed Extensions for C++
provides the “sysimport” attribute, whilst Visual Basic provides the “DECLARE”
statement. The compiler parses the decoration and emits the corresponding
language-neutral metadata that will be used by PInvoke.

Information required by PInvoke falls into three kinds:

• Define the CLR method that corresponds to the unmanaged function. This
includes its name, location, arguments and return type

• Where the unmanaged code expects a struct argument, define a CLR class that
corresponds to the unmanaged struct – its fields, layout and alignment

• Where the default marshalling provided by PInvoke is not what you want,
override with a different marshalling behaviour

Building PInvoke metadata can be quite simple. Here is an example (the source
language doesn’t matter; its intent should be clear):

class C {
 [sysimport(dll = "user32.dll")]
 public static extern int MessageBoxA(int h, string m, string c, int type);
 public static int Main() {
 return MessageBoxA(0, "Hello World!", "Caption", 0);
 }
}

To build the corresponding PInvoke metadata, you need only call DefineMethod,
DefinePinvokeMap and DefineParam for each parameter. (Individual compilers may
choose to structure their definitions differently – a DefineMethod followed by a
SetMethodProps, for example, but the suggested sequence is possible)

On the other hand, building PInvoke metadata can also come quite involved, as
witnessed by the size of this spec, and the other specs, listed below, that support it.
This happens if your unmanaged function accepts struct arguments, and requires
non-default marshalling. Here is a second, more complicated example:

[sysstruct(format=ClassFormat.Auto)]
public class LOGFONT {

Metadata API

Page 140

 public const int LF_FACESIZE = 32;
 public int lfHeight;
 public int lfWidth;
 public int lfEscapement;
 public int lfOrientation;
 public int lfWeight;
 public byte lfItalic;
 public byte lfUnderline;
 public byte lfStrikeOut;
 public byte lfCharSet;
 public byte lfOutPrecision;
 public byte lfClipPrecision;
 public byte lfQuality;
 public byte lfPitchAndFamily;
 [nativetype(NativeType.FixedSysString, size=LF_FACESIZE)]
 public string lfFaceName;
};

class C {
 [sysimport(dll="gdi32.dll",charset=CharacterSet.Auto)]
 public static extern int CreateFontIndirect(
 [in, nativetype(NativeType.NativeTypePtr)]
 LOGFONT lplf // characteristics
);
 public static void Main() {
 LOGFONT lf = new LOGFONT();
 lf.lfHeight = 9;
 lf.lfFaceName = "Arial";
 int i = CreateFontIndirectA(lf);
 Console.WriteLine(i);
 }
}

To build the PInvoke metadata for this example requires calls to most of the
following routines in the IMetaDataEmit interface:

DefineMethod: Define a method, with its CLR method signature

DefinePinvokeMap: Specify PInvoke info for a method

DefineTypeDef: Define a CLR class or valuetype, used as an argument to a
PInvoke-dispatched function

DefineField: Define a data field within a class

SetClassLayout: Supply additional info on the class layout, such as field packing

SetFieldMarshal: Supply non-default marshaling for a function argument, function
return value, or a field within a struct

For more info on specific areas touched upon in this spec, see the following
documents:

• Platform Invoke Usage Guide for an overview of PInvoke from the user’s
perspective

• DataTypeMarshaling for details of all the field marshalling supported by Pinvoke
(much of it shared with COM integration)

Metadata API

Page 141

14.2 PInvoke Metadata for Methods
You must define a managed method, that describes the target unmanaged function
you wish to reach via PInvoke. You may include several methods in a given class
that describe unmanaged functions, or you can define a separate class and method
for each unmanaged function; the choice is yours.

In the descriptions that follow, all metadata methods are defined on the
IMetaDataEmit interface.

14.3 DefineMethod for PInvoke
For each unmanaged function you want to call via PInvoke, you must define a
managed method, that describes that target unmanaged function. For this, use
DefineMethod. This routine is used to define all managed methods to the metadata.
However, when used for methods that match to PInvoke-dispatched native functions,
some of the arguments have particular restrictions. These are listed in the next
table.

in/out Parameter Description Required?

in td TypeDef token of parent no

in wzName Member name in Unicode yes

in dwMethodFlags Member attributes yes

in pvSig Method signature yes

in cbSig Count of bytes in pvSig yes

in ulCodeRVA Address of code must be 0

in dwImplFlags Implementation flags for method no, may be all 1s

out pmd Member token

dwMethodFlags is a bitmask from the CorMethodAttr enum in CorHdr.h. You must:
set mdStatic; clear mdSynchronized; clear mdAbstract

pvSig must be a valid CLR method signature. Each parameter must be a valid
managed (as opposed to unmanaged) data type. See earlier chapters of this spec
for how to compose a CLR method signature; take special note of the
CorCallingConvention enum in CorHdr.h

ulCodeRVA must be zero

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h. You must: set
miNative; set miUnmanaged

14.4 DefineMethodImpl for PInvoke
If you are defining the implementation for a method that is defined by an interface,
you use DefineMethodImpl. This routine accepts only a subset of what DefineMethod
accepts, because some of the inherited information cannot be changed (for example,
the name of the method). Whilst this is used for regular managed methods, we do
not support its use for PInvoke.

Metadata API

Page 142

14.5 DefinePinvokeMap for PInvoke
Use DefinePinvokeMap to provide further information about a method already
defined by the DefineMethod call above.

in/out Parameter Description Required?

in tk Token for target method – a MethodDef or MethodImpl yes

in dwMappingFlags Flags used by Pinvoke to do the mapping yes

in wzImportName Name of target export method in unmanaged DLL no

in mdImportDLL mdModuleRef token for target DLL yes

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h. You can
set the following flags:

• pmNoMangle – if set, function name is used as-is in searching the target native
DLL (ie, no fuzzy matching)

• pmCharSetAnsi, pmCharSetUnicode, pmCharSetAuto – set one as appropriate

• pmSupportLastError – if set, user can query last error set within the unmanaged
method

14.6 SetPinvokeMap for PInvoke
Use SetPinvokeMap to provide further information, or change the information, you
supplied in an earlier call to DefinePinvokeMap. The arguments, their meanings and
restrictions are exactly as for DefinePinvokeMap, above.

14.7 Method Signatures for Plnvoke
The call to DefineMethod includes an argument, called pvSig, that takes the
signature of the method. This blob specifies the method’s signature – the type for
each argument, and for the return type, if any. The format of this blob is defined
below. This section summarizes details of the signature that are specific to its use
for PInvoke:

• All data types must be managed data types, even though they end up, after
PInvoke dispatch, as arguments to an unmanaged function

• PInvoke provides default, automatic marshaling of simple (non-struct)
arguments, and of simple fields within struct arguments. The defaults are chosen
using heuristics about the managed data type declaration, target platform, and
method-level ansi/unicode/auto attribute. (This default marshaling can be over-
ridden if required – see SetFieldMarshal)

• In the method signature, a struct argument should be declared as a CLR class or
valuetype that carries layout information (what we called a “formatted type” in
the discussion above).

14.8 PInvoke Metadata for Function Parameters
You should specify the direction of each parameter to an unmanaged function.
That’s to say, whether it is an in, out, or inout parameter. In the cases where a copy

Metadata API

Page 143

of the corresponding argument is made for the unmanaged code to access (typically,
for a non-isomorphic struct passed by-reference), the setting of these flags is
important. In these cases, PInvoke does the following:

• in: make a copy of the managed struct for the unmanaged code to access. This
struct is not copied back to the managed caller

• out: create a freshly-initialized, unmanaged struct for the unmanaged code to
access. This struct is copied back to the managed caller

• inout: make a copy of the managed struct for the unmanaged code to access.
This struct is copied back to the managed caller

Note that where a struct is isomorphic, but specified only as in or as out, PInvoke
may, for reasons of efficiency, pin the managed struct and pass a reference to that
struct to the unmanaged code. In such cases, the behaviour that results will be as if
you had asked for inout.

14.9 DefineParam for PInvoke
To specify each parameter’s direction, call DefineParam. Do not specify a default
value – dwDefType, pValue or cbValue.

in/out Parameter Description Required?

in md Token for the method whose parameter is being defined yes

in ulParamSeq Parameter sequence number yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

out ppd ParamDef token assigned

ulParamSeq specifies the parameter sequence number, starting at 1. Use a value of
0 to mean the method return value

wzName is the name to give the parameter. If you specify null, this argument is
ignored

dwParamFlags is a bitmask from the CorParamAttr enumeration in CorHdr.h. Set the
pdIn and/or pdOut bits in this mask

14.10 SetParamProps for PInvoke
As an alternative to DefineParam, you may use SetParamProps. This is an unlikely
scenario, except perhaps during an incremental compilation session. However, for
the record, here is the detail – the same restrictions apply as for DefineParam

Metadata API

Page 144

in/out Parameter Description Required?

in pd Token for target parameter yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

14.11 PInvoke Metadata for Struct Arguments
As mentioned previously, a PInvoke-called function can accept struct arguments.
Such arguments are expressed as classes or valuetypes that include layout
information (“formatted types”). This section describes details of how to specify
layout in the DefineTypeDef call you make to define those classes.

14.12 DefineTypeDef for PInvoke
Although supported, it is unlikely that a compiler will define methods or properties
for a “formatted type” – that’s to say, for a managed class or valuetype, whose
purpose is to describe a matching unmanaged struct argument for a PInvoke-called
function. Routinely, the type definition will include only fields – no methods, no
properties, no superclass, no interfaces-to-implement. With these simplifications,
the arguments to DefineTypeDef for a PInvoke struct, are as follows:

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass. Specify as zero yes

in rtkImplements[] Array of tokens specifying the interfaces that this class or

interface implements (inherits via interface inheritence).

Specify as null

no

out ptd TypeDef token assigned

dwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h. You must set
either tdLayoutSequential, or tdExplicitLayout (not both). You should set
tdAnsiClass, tdUnicodeClass or tdAutoClass.

If your struct has no unions, then set tdLayoutSequential, and, if necessary, call
SetClassLayout to provide more details. If you are in the unfortunate position that
your struct includes unions (sometimes called overlays, depending upon source
language), or your struct includes weird padding between fields, then you must set
tdExplicitLayout, and follow with a call to SetClassLayout to provide more details.

The string formatting flags say how managed strings (which are always encoded in
Unicode) should be marshalled to and from unmanaged code:

• tdAnsiClass – PInvoke will marshal to unmanaged Ansi

Metadata API

Page 145

• tdUnicodeClass – PInvoke will pin, or copy, to unmanaged Unicode (no format
change of the individual characters required)

• tdAutoClass – PInvoke will choose tdAnsiClass or tdUnicodeClass, by inspecting
which platform it is being executed upon

14.13 DefineField for PInvoke
Having defined the struct using DefineTypeDef, the next step is to define each field
in the struct, using DefineField. Just follow the usual rules for using DefineField;
there are no special rules to apply just because these are fields of a struct that will
be used for PInvoke. As a reminder, here are the arguments for the Definefield
method:

in/out Parameter Description Required?

in td Typedef token for the enclosing class yes

in wzName Field name in Unicode yes

in dwFieldFlags Field attributes yes

in pvSig Field signature as a blob yes

in cbSig Count of bytes in pvSig yes

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cbValue Size in bytes of pValue no

out pmd FieldDef token assigned

dwFieldFlags is a bitmask from the CorFieldAttr enumeration in CorHdr.h

dwDefType is a value from the CorElementType enumeration in CorHdr.h. If you do
not want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END

14.14 SetClassLayout for PInvoke (Sequential)
If you told DefineTypeDef that your struct was tdLayoutSequential, then you should
call SetClassLayout to further define the field layout.

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field.

Specify as zero

no

in ulClassSize Overall size of these class objects, in bytes no

dwPackSize is the packing size between adjacent fields. For each field in sequence,
the runtime looks at its size, and current offset within the struct. It lays the field
down to start at its natural offset, or the pack size, whichever results in the smaller

Metadata API

Page 146

offset. This matches precisely the semantics of the C and C++ #pragma pack
compiler directive

rFieldOffsets is not required in this instance. Specify it as zero

ulClassSize is optional. If you specify this argument, then PInvoke will marshal this
struct argument by making a blind, byte-by-byte copy of the managed object. [This
technique is used by Visual C++]

14.15 SetClassLayout for PInvoke (Explicit)
If you told DefineTypeDef that your struct was tdExplicitLayout, then you must call
SetClassLayout to further define the field layout.

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size. Specify as zero no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field on

the class for which sequence or offset information is

specified. Terminate array with mdTokenNil.

no

in ulClassSize Overall size of these class objects. Specify as zero no

rFieldOffsets is an array of COR_FIELD_OFFSETs. The COR_FIELD_OFFSET struct is
defined in CorHdr.h, but repeated here for convenience:

typedef struct COR_FIELD_OFFSET {

 mdFieldDef tokField;

 ULONG ulOffset;

} COR_FIELD_OFFSET;

The tokField is the token for the target field; the ulOffset is the byte offset within the
struct at which it starts. The struct is assumed to start at offset 0. (So, if you
specify just one field, 4 bytes wide, with a ulOffset of 1000, then you create a
managed struct that is 1004 bytes long). Terminate the rFieldOffsets[] array with a
field token of mdTokenNil.

14.16 PInvoke Metadata for Explicit Marshalling
If the default marshaling provided by PInvoke is just what you need, then you can
skip this section. However, if you want to specify non-default marshaling for any of
the following items:

• function return value

• function argument

• field within a struct that is a function argument

then you must specify the requested behaviour using SetFieldMarshal.

Both PInvoke and COM integration provide marshaling of data between managed and
unmanaged code. And for most data types, they share the same marshalling code.
The marshalling behaviour is specified in the DataTypeMarshaling spec. Please

Metadata API

Page 147

consult this spec for details of PInvoke’s default marshaling (in most cases the same
as for COM integration), as well as the valid alternatives you may specify for non-
default marshalling.

14.17 SetFieldMarshal for PInvoke
For each item that requires non-default marshaling, call SetFieldMarshal and specify
which native type the item should be marshalled to.

in/out Parameter Description Required?

in tk Token for target item yes

in pvUnmgdType Signature for unmanaged type yes

in cbUnmgdType Count of bytes in pvUnmgdType yes

14.18 PInvoke Custom Attributes
Compilers can alternatively set marshaling information by emitting certain pre-
defined Custom Attributes (eg the MarshalAsAttribute). This enables compilers to
use their generic code, that parses and handles all Custom Attributes, to be used to
direct the operation of the runtime for PInvoke marshalling.

Each compiler is free to choose which way it emits metadata – depending upon the
tradeoff it chooses among the following factors:

1. compile-time speed and efficiency
2. ease of use
3. good argument checking
4. good isolation or genericity
5. whether the compiler itself is written in managed or unmanaged code

Broadly speaking, using unmanaged metadata-emit APIs is good for 1. Using
unmanaged metadata-emit APIs, together with pre-defined Custom Attributes
provides some level of 4, at the cost of slowing compilation. Use of Reflection Emit
(only works for case 5) is good for 2, 3 and 4.

Metadata API

Page 148

15 Minimal Metadata
Most of the information captured in CLR metadata is required in order for CLR to
successfully execute the accompanying code. But not all. There are a few items in
metadata that are optional – compilers can emit those items, or not. If they choose
not to emit them, CLR can still execute the accompanying code; but you lose
information that can be helpful in various scenarios – design-time browsing of type
information, runtime serialization, remote invocation of methods, runtime debug
support, runtime Reflection of type information, runtime profiling of a managed
application, ‘clean’ disassembly of an image back to MSIL, COM interop, etc

There are two reasons why a compiler may choose not to emit such optional items of
metadata:

• Avoid wasting space – disk space, memory and comms bandwidth

• Make the results of disassembling an EXE or DLL image less understandable
to a human reader

This MiniSpec explains which parts of metadata can be omitted, and the
consequences if compilers do so. It does not discuss implementation in any depth –
only enough to explain space consumption, both for Define methods, and for
subsequent Set methods.

Note that compilers should consider very carefully the benefits of omitting any
metadata, or of providing a compiler switch that allows their users to do so. It might
offer particular advantages for a ‘pre-cooked’ custom application – a proto-typical
case would be that of an embedded application (eg a cellphone, or an automobile)
that performs a dedicated, pre-defined, realtime task, where it is known ahead of
time that the system will not need to support browsing, Reflection, serialization, or
whatever.

However, omitting any metadata for regular desktop or server applications removes
many of the advantages CLR has to offer (see above). This is not a step to be
taken lightly.

Finally, a summary of this chapter is: there are no miracles! About the only item a
compiler might contemplate not emitting is the definition of method parameters.
Almost everything else is required. There are no massive savings lurking in the fine-
print. The area most likely to reap rewards is to avoid inadvertently creating remap
tables – see section 15.5.

15.1 Space Saving
When you store metadata in an image, it can use up three sorts of space:

• Disk space, for the saved EXE or DLL file

• Memory, when that metadata is imported by another compiler, or imported by
the CLR itself at execution time

• Bandwidth, when transferring the image between computers, for mobile code
scenarios

As you will see from this chapter, the total possible savings to be made by not
emitting optional items of metadata is really very small, in comparison with the total
size of a typical image. By contrast, you can make significant savings by being

Metadata API

Page 149

careful over when you emit information, rather than what information you emit – this
is due to how metadata silently creates intermediate remap tables (see section 15.5)

This MiniSpec explains how much space is consumed, in the persisted image, for
each item of metadata. And, by implication, of the savings to be made by not
emitting those items. The savings depend upon where the item is stored, as follows:

15.1.1 String Heap
This is where we keep program identifiers – names of classes, fields, methods, etc.
Strings are stored as null-terminated Utf8 strings. So, if your identifiers use simple,
ASCII characters, each letter takes up one byte in the heap. So, a field name like
“Weight” consumes 7 bytes in the heap (6 for “Weight” plus one for the terminating
“\0”).

But, recall that we detect duplicates and store only one instance of each string. So if
a compiland uses “Weight” in two different declarations, it is stored only once in the
String heap.

15.1.2 Blob Heap
This is where we keep genuine binary data that can legitimately embed nulls – for
example, method and field signatures. The blob is stored as a size (number of bytes
that follow, encoded as a PackedLen), followed by the byte array that represents the
blob itself. PackedLen is a compressed integer, explained in detail elsewhere – see
section 11.4. In summary, it occupies:

• 1 byte, if the length-in-bytes of the blob lies between 0 and 127
• 2 bytes, if the length-in-bytes of the blob lies between 2^8 and 2^14
• 4 bytes, otherwise

Like other heaps, we detect duplicates and store only one instance of each blob

15.1.3 UserString Heap
This is where we keep user-defined strings. A typical example is a literal string like
“HelloWorld”, passed as an argument to a Console.WriteLine routine.

UserStrings are stored in their own Blob heap. They are stored in Unicode, exactly
as provided by the compiler (via a call to DefineUserString) plus one trailing byte
that records whether the string includes any characters that would prevent us doing
a fast compare (specifically, a comma, a hyphen, or any character with code-point
value >= 0x80). And like the regular String heap, we prepend a PackedLen size.

Like other heaps, we detect duplicates and store only one instance of each
UserString.

15.1.4 Metadata Tables
Metadata stores its information in tables – two-dimensional arrays. For example, the
TypeDef table stores all the Types defined within a module. It has several columns,
for the TypeDef’s Name, Flags, FieldList and so on. Each Type definition corresponds
to a row in that table. Each column stores a 2-byte or 4-byte value. That value is
either a constant (eg a Flags bitmask), or an index into another metadata table, or

Metadata API

Page 150

one of the metadata heaps. We decide at save-time, whether each column needs to
be 2-byte or 4-byte by examining the largest value it holds.

Although we squeeze the stored width of each column at save-time, each table has a
fixed number of columns. That’s to say, even if all the values for a certain column
were zero in a given table (highly unlikely), we still store that entire column of
zeroes; we do not squeeze it out altogether.

So, omitting optional metadata has two effects on the space taken up by metadata
tables:

• each item not emitted saves a row in one (and sometimes more) metadata
tables

• if the total number of rows in a given metadata table thereby falls below a
threshold, it may trigger a column-width compression to 2 bytes

In the details that follow, we say how many columns relevant metadata tables hold.
So, if a given item of metadata creates a new row in, say, a 3-column table, then
you know it uses up between 6 and 12 bytes of space in the persisted image (6
bytes if all 3 columns have values that can be encoded in 2-bytes, or 12 bytes if all 3
columns have values that require 4 bytes to encode those values)

15.2 Obfuscation
Many software providers are concerned that purchasers of their product might be
able to reverse-engineer its algorithms or data structures, by disassembling, or
decompiling, the binary images they ship. This is perceived as a threat to
safeguarding their Intellectual Property. Where the software is shipped as
conventional, binary images, this task is widely viewed as just taking too much effort
to repay its cost. But the task is made considerably easier by any system, CLR
included, that embeds type information into the image, and includes code in any
intermediate language, that is essentially unoptimized (and therefore easier to
‘understand’)

There are numerous techniques available to hide, or obfuscate both code, and its
accompanying type information, to make harder the task of deciphering its
algorithms and data structures. This starts with the obvious, like giving all program
identifiers ‘nonsense’ or hard-to-understand names, and advances through more
innovative techniques to confuse the ‘reader’. There’s also a long history of
obfuscator tools, and de-obfuscator tools – each leap-frogging the other in their
attempts to conceal/reveal the ‘secrets’ of shipped images. This MiniSpec does not
address the area of ‘active’ obfuscation.

However, not emitting optional items of metadata helps conceal an image’s ‘secrets’
too, by making the results of disassembly or decompilation, perhaps a little harder to
understand – a kind of ‘passive’ obfuscation. This MiniSpec will help compilers
understand what can be achieved in this direction. But it’s left up to each reader to
decide how much each omission achieves as a step towards obfuscation.

15.3 Define and Set
You can use a Define method to emit metadata. Subsequently, you can use a
companion Set method to modify the information you already emitted. If the
information changed by the Set call is stored in a metadata table – typically a Flags
field, then the Set call updates the in-memory row of that table, and consumes no

Metadata API

Page 151

extra space. However, if the information to be changed lies in one of the heaps, we
create the new info in the heap, and update indexes in metadata tables to point to
that new info. But, we do not delete the old heap info – that’s to say, the metadata
engine does not shift down all subsequent items in the heap to squeeze that dead
info out of existence. (Of course, the info would only be candidate for such deletion
if it were not referenced from elsewhere – recall that we share duplicate info in
heaps)

This strategy works fine for ‘well-behaved’ compilers, that emit metadata via Define
calls, once they have gathered all the information required from their source files.
But it’s certainly possible for a naive compiler to waste lots of space in metadata by
injudicious use of Defines followed by Sets.

15.4 One Big Module
In principle, by merging lots of separate modules into one big module, it should be
possible to eliminate all internal identifier name strings (stored in the String heap) –
that’s to say, the names of all identifiers that are defined within our one big module.

In the simplest case, think of building one big DLL from a single source file, rather
than 5 small DLLs from 5 small source files. The resulting MSIL code embeds
metadata def tokens (TypeDef, FieldDef, MethodDef, etc) and does not require CLR
to perform runtime string-matching to resolve any references. (it still needs to
retain names for references to any ‘external’ modules, of course).

This strategy, if supported, would clearly save considerable space, and provide some
minimal level of obfuscation. (On the downside, it would render the output of
browsers, debuggers, or Reflection queries, virtually useless)

However, this scenario is not supported: CLR itself uses these text names to build
hash tables for fast runtime lookup of information – even though it turns out that we
never actually need subsequently to lookup that info. This is the situation for V1; it
might be reviewed post V1.

On a related topic, a compiler might imagine it could save space in metadata by
avoiding emitting Refs (TypeRef, MemberRef) to any items that in fact are defined in
the same module – simply work out the correct Def and emit that instead. This
strategy is always possible, but at extra cost in the buffering and complexity of the
compiler. However, the metadata engine already performs automatic Ref-to-Def
folding at save time, so any such attempt by the compiler would be wasted effort!

[Ref-to-Def folding describes the situation where a compiler emits references
(TypeRef, MemberRef) to items that are actually defined, earlier or later during
compilation, within the same module. The metadata engine replaces those Refs with
their corresponding Defs, and discards the now-redundant Refs. The same holds
true when the VC Linker calls metadata’s Merge() routine to combine the two or
more OBJs into a single image]

15.5 Order of Emission
If you emit metadata in a certain order, then the metadata engine can store the
resulting data in a compact form. If you break these ordering constraints, then
everything still works, but the metadata engine silently creates intermediate remap
tables. These take up extra space in the PE file, and are slower to query at runtime.
Each remap table has a single column (2 or 4 bytes wide, as required – see section
15.1.4).

Metadata API

Page 152

Note that you need only emit one single item out-of-order to trigger creating a
remap table. For example, if you emit a single Field definition out-of-order, the
metadata engine creates a remap table with one row for each Field that is defined in
the entire module.

The reasons for, and rules surrounding, order of emission, are explained in section
3.9. The following list summarizes the cost in disk space of emitting out-of-order:

• Field : remap table with one row for each Field (includes any global variables)
defined in the module

• Method : remap table with one row for each Method (includes any global
functions) defined in the module

• Param : remap table with one row for each Param defined in the module

• Property : remap table with one row for each Property defined in the module

• Event : remap table with one row for each Event defined in the module

Note that this single factor – avoiding emitting metadata definitions out-of-order –
likely saves more space than all other factors put together.

15.6 Properties and Events
A Property definition is recorded in metadata as essentially a collection of Methods,
associated with a given Type definition – and not much else. Moreover, the CLR
itself does not understand Properties – it operates upon the specific Methods that go
to make up the Property. From most perspectives, you can think of Property
definitions within metadata as syntactic sugar, generated by compilers, and used by
browsers. This is not to disparage their usefulness – it just highlights that the
abstraction really is built at a higher level, without much help from metadata or the
CLR.

The same arguments apply to Events.

So, if a given compiler system were intent on creating an executable image, that
consumes the very minimum of metadata, it could choose not to emit Property or
Event metadata; instead it would directly reference the Methods that comprise each
Property or Event.

Clearly, browsers or Reflection would not report any Properties or Events – instead,
just a large number of methods with unusual names (set_foo, get_foo, etc). But the
savings in metadata space do mount up, as follows:

Each Type that defines a Property consumes one row of the 2-column
“PropertyMap” table

Each Property defined for a given Type consumes one row of the 4-column
“Property” table, plus its name (String heap), plus its signature (Blob heap)

Each Method defined for a given Property (setter, getter, OtherMethods[])
consumes one row of the 3-column “MethodSemantics” table

This is in addition to the space consumed for each Method – that’s to say, the space
consumed if the Method were a regular, non-Property-owned, method.

For events, the corresponds savings are similar:

Each Type that defines an Event consumes one row of the 2-column “EventMap”
table

Metadata API

Page 153

Each Event defined for a given Type consumes one row of the 3-column “Event”
table, plus its name (String heap)

Each Method defined for a given Event (AddOn, RemoveOn, Fire and
OtherMethods[]) consumes one row of the 3-column “MethodSemantics” table

This is in addition to the space consumed for each Method – that’s to say, the space
consumed if the Method were a regular, non-Event-owned, method.

15.7 NGen
CLR supports ‘pre-compiling’ of assemblies, using the Ngen tool (Native Code
Generator). That’s to say, rather than JIT-compile each method from MSIL to native
code, on-demand at runtime, we compile all of the MSIL throughout the files that
comprise the assembly, and save them to disk. Then, at runtime, we can simply
executed the pre-compiled, native code.

How does Ngen affect the “minimal metadata” picture?

The answer is (at least for V1 of CLR) – not at all. The entire content of metadata in
the original files is kept, without change, in the original file.

15.8 Details
This section defines the space used to store each item of metadata, and says which
are optional. Methods are described in the same order as they are documented in
the Metadata API spec.

15.8.1 DefineAssembly
STDAPI DefineAssembly(const void *pbOriginator,

 ULONG cbOriginator,

 ULONG ulHashAlgId,

 LPCWSTR szName,

 const ASSEMBLYMETADATA *pMetaData,

 DWORD dwAssemblyFlags,

 mdAssembly *pma)

A call to DefineAssembly creates a row in the 10-column “Assembly” table. In
addition:

pbOriginator/cbOriginator are stored in the Blob heap (see section15.1.2)

szName is stored in the String heap (see section 15.1.1)

The fields of pMetaData are disposed as follows:

• szLocale stored in String heap (see section 15.1.1)

• rProcessor/ulProcessor stored into successive rows of the 1-column
“AssemblyProcessor” table

• rOS/ulOS – an array of OSINFOs (with fields dwOSPlatformId,
dwOSMajorVersion, dwOSMinorVersion) – stored into successive rows of the
3-column “AssemblyOS” table

Metadata API

Page 154

• szConfiguration stored in the String heap (see section 15.1.1)

The following arguments are informational, and are ignored for execution:
pMetaData->rProcessor, pMetaData->rOS, pMetaData->szConfiguration.

The pbOriginator/cbOriginator is required if this assembly is to be stored in the
shared Assembly cache cache.

Recall that binding of AssemblyRefs to AssemblyDefs depends upon the fields
supplied via the following arguments:

• Assembly name = szName
• Public Key = pbOriginator/cbOriginator (if present)
• Version = pMetaData->usMajorVersion, usMinorVersion, usRevisionNumber,

usBuildNumber
• Locale = pMetaData->szLocale/cbLocal

15.8.2 DefineFile
STDAPI DefineFile(LPCWSTR szName,

 const void *pbHashValue,

 ULONG cbHashValue,

 DWORD dwFileFlags,

 mdFile *pmf)

Each call to DefineFile creates a row in the 3-column “File” table. In addition:

szName is stored in the String heap (see section 15.1.1)

pbHashValue/cbHashValue are stored in the Blob heap (see section15.1.2)

All arguments are required and used for execution.

15.8.3 DefineExportedType
STDAPI DefineExportedType(LPCWSTR szName,

 mdToken tkImplementation,

 mdTypeDef tkTypeDef,

 DWORD dwExportedTypeFlags,

 mdExportedType *pmdct)

Each call to DefineFile creates a row in the 5-column “ExportedType” table. In
addition:

szName is stored in the String heap (see section 15.1.1)

15.8.4 DefineManifestResource
STDAPI DefineManifestResource(LPCWSTR szName,

 LPCWSTR szDescription,

 mdToken tkImplementation,

 DWORD dwOffset,

 DWORD dwResourceFlags,

Metadata API

Page 155

 mdManifestResource *pmmr)

Each call to DefineManifestResource creates a row in the 7-column
“ManifestResource” table. In addition:

szName, szDescription, szMIMEType and szLocale are stored in the String heap (see
section 15.1.1)

szDescription is informational and ignored for execution.

15.8.5 SetModuleProps
HRESULT SetModuleProps(LPCWSTR wzName)

A call to SetModuleProps updates the automatically-created, single row in the 3-
column “Module” table. In addition:

wzName is stored in the String heap (see section 15.1.1).

wzName is not required for execution. If you do supply a name, then CLR checks
that the name matches the name supplied in any ModuleRefs elsewhere in the
Assembly (and this check is a case-sensitive match). If you do not supply a name,
then ModuleRef lookups are based solely on the name by which the module is known
to the Assembly cache resolving service – typically, the name of the file in which it is
held within a Win32 file system (and these matches are made case-blind)

15.8.6 DefineCustomAttribute
HRESULT DefineCustomAttribute(mdToken tkOwner,

 mdToken tkAttrib,

 void const *pBlob,

 ULONG cbBlob,

 mdCustomAttribute *pca)

Each call to DefineCustomAttribute creates a row in the 3-column “CustomAttribute”
table. In addition:

pBlob/cbBlob are stored in the Blob heap (see section 15.1.2). If the constructor
method has no arguments (that’s to say, its simple absence or presence is all that’s
required to convey what’s required), then you don’t need to emit a Blob, even one of
length zero.

15.8.7 SetCustomAttributeValue
HRESULT SetCustomAttributeValue(mdCustomAttribute pca,

 void const *pBlob,

 ULONG cbBlob)

Each call to SetCustomAttribute updates a row in the 3-column “CustomAttribute”
table. In addition:

pBlob/cbBlob are stored in the Blob heap (see section 15.1.2). Metadata will not
reclaim the space occupied in the heap by a previously-defined pBlob/cbBlob (see
section 15.3)

Metadata API

Page 156

15.8.8 DefineTypeDef
HRESULT DefineTypeDef(LPCWSTR wzName,

 DWORD dwTypeDefFlags,

 mdToken tkExtends,

 mdToken rtkImplements[],

 mdTypeDef *ptd)

Each call to DefineTypeDef creates a row in the 9-column “TypeDef” table. In
addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4)

15.8.9 SetTypeDefProps
HRESULT SetTypeDefProps(mdTypeDef td,

 DWORD dwTypeDefFlags,

 mdToken tkExtends,

 DWORD mdToken rtkImplements[])

Each call to SetTypeDefProps updates a row in the 9-column “TypeDef” table. In
addition:

15.8.10 DefineMethod
HRESULT DefineMethod(mdTypeDef td,

 LPCWSTR wzName,

 DWORD dwMethodFlags,

 PCCOR_SIGNATURE pvSig,

 ULONG cbSig,

 ULONG ulCodeRVA,

 DWORD dwImplFlags,

 mdMethodDef *pmd)

Each call to DefineMethod creates a row in the 6-column “Method” table. In
addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4)

pvSig/cbSig are stored in the Blob heap (see section 15.1.2)

15.8.11 SetMethodProps
HRESULT SetMethodProps(mdMethodDef md,

 DWORD dwMethodFlags,

 ULONG ulCodeRVA,

 DWORD dwImplFlags)

Metadata API

Page 157

Each call to SetMethodProps updates a row in the 6-column “Method” table. No
other space is consumed.

15.8.12 DefineField
HRESULT DefineField(mdTypeDef td,

 LPCWSTR wzName,

 DWORD dwFieldFlags,

 PCCOR_SIGNATURE pvSig,

 ULONG cbSig,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue,

 mdFieldDef *pmd)

Each call to DefineField creates a row in the 3-column “Field” table. In addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4)

pvSig/cbSig are stored in the Blob heap (see section 15.1.2)

pValue/cchValue are stored in the Blob heap (see section 15.1.2). These are entirely
optional (used to record a default value for a field – that value can be inspected at
compile-time). If you choose to store such a value, it consumes space in both the
Blob heap, as well as one row in the 3-column “Constant” table.

15.8.13 SetFieldProps
HRESULT SetFieldProps(mdFieldDef fd,

 DWORD dwFieldFlags,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue)

Each call to SetFieldProps updates a row in the 3-column “Field” table. In addition:

pValue/cchValue are stored in the Blob heap (see section 15.1.2). Metadata will not
reclaim the space occupied in the heap by a previously-defined pValue/cchValue (see
section 15.3)

15.8.14 DefineNestedType
HRESULT DefineNestedType(LPCWSTR wzName,

 DWORD dwTypeDefFlags,

 mdToken tkExtends,

 mdToken rtkImplements[],

 mdTypeDef tdEncloser,

 mdTypeDef *ptd)

Metadata API

Page 158

Each call to DefineNestedType creates a row in the 9-column “TypeDef” table. It also
creates a row in the 2-column “NestedClass” table. It differs from the DefineType
method only in its tdEncloser argument (which ends up as one column of the
“NestedClass” table). See DefineTypeDef (section 15.8.8) for further details on the
space consumed by the other arguments.

15.8.15 DefineParam
HRESULT DefineParam(mdMethodDef md,

 ULONG ulParamSeq,

 LPCWSTR wzName,

 DWORD dwParamFlags,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue,

 mdParamDef *ppd)

This is one of the few genuine cases where you can freely omit metadata, yet the
code will still execute successfully!

Each call to DefineParam creates a row in the 3-column “Param” table. In addition:

wzName is stored in the String heap (see section 15.1.1). It is informational and not
used for execution.

pValue/cchValue are stored in the Blob heap (see section 15.1.2). These are entirely
optional (used to record a default value for the parameter – that value can be
inspected at compile-time). If you choose to store such a value, it consumes space
in both the Blob heap, as well as one row in the 3-column “Constant” table.

15.8.16 SetParamProps
HRESULT SetParamProps(mdParamDef pd,

 LPCWSTR wzName,

 DWORD dwParamFlags,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue)

Each call to SetParamProps updates a row in the 3-column “Param” table. In
addition:

wzName is stored in the String heap (see section 15.1.1). Metadata will not reclaim
the space occupied in the heap by a previously-defined wzName (see section 15.3)

pValue/cchValue are stored in the Blob heap (see section 15.1.2). Metadata will not
reclaim the space occupied in the heap by a previously-defined pValue/cchValue (see
section 15.3)

Metadata API

Page 159

15.8.17 DefineMethodImpl
HRESULT DefineMethodImpl(mdTypeDef td,

 mdToken tkBody,

 mdToken tkDecl)

Each call to DefineMethodImpl creates a row in the 3-column “MethodImpl” table.

15.8.18 SetRVA
HRESULT SetRVA(mdMethodDef md,

 ULONG ulRVA)

Each call to SetRVA updates a row in the 6-column “Method” table. It consumes no
extra space.

15.8.19 SetFieldRVA
HRESULT SetFieldRVA(mdFieldDef fd,

 ULONG ulRVA)

It is rare to assign a field an RVA. So we don’t waste space by defining a column for
RVA in the 3-column “Field” table. So, when you call SetFieldRVA, it creates a row in
the 2-column “FieldRVA” table. Subsequent calls to SetFieldRVA for the same field
simply update that row, without consuming extra space (though they do indicate an
insane compiler-writer)

15.8.20 DefinePinvokeMap
HRESULT DefinePinvokeMap(mdToken tk,

 DWORD dwMappingFlags,

 LPCWSTR wzImportName,

 mdModuleRef mrImportDLL)

You should define PInvoke information only if the target method is definitely
unmanaged, and to be reached via PInvoke dispatch. Otherwise, such definition
creates redundant metadata (which is not detected as such)

Each call to DefinePinvokeMap creates a row in the 4-column “ImplMap” table. In
addition:

wzImportName is stored in the String heap (see section 15.1.1). You must supply a
non-null wzImportName (see section 15.4) – it represents the name of the target,
unmanaged function (or a string-encoded number like “#124” for import-by-ordinal)

15.8.21 SetPinvokeMap
HRESULT SetPinvokeMap(mdToken tk,

 DWORD dwMappingFlags,

 LPCWSTR wzImportName,

Metadata API

Page 160

 mdModuleRef mrImportDLL)

Each call to SetPinvokeMap updates a row in the 4-column “Param” table. In
addition:

wzImportName is stored in the String heap (see section 15.1.1). Metadata will not
reclaim the space occupied in the heap by a previously-defined wzImportName (see
section 15.3)

15.8.22 SetFieldMarshal
HRESULT SetFieldMarshal(mdToken tk,

 PCCOR_SIGNATURE pvUnmgdType,

 ULONG cbUnmgdType)

When you call SetFieldMarshal it creates a row in the 2-column “FieldMarshal” table.
Subsequent calls to SetFieldMarshal for the same field simply update that row,
without consuming extra space (this would be an unusual action for any compiler).
In addition:

pvUnmgdType/cbUnmgdType are stored in the Blob heap (see section 15.1.2).
Recall that metadata will not reclaim the space occupied in the heap by a previously-
defined pvUnmgdType/cbUnmgeType (see section 15.3)

15.8.23 DefineAssemblyRef
STDAPI DefineAssemblyRef(const void *pbOriginator,

 ULONG cbOriginator,

 LPCWSTR szName,

 const ASSEMBLYMETADATA *pMetaData,

 const void *pbHashValue,

 ULONG cbHashValue,

 DWORD dwAssemblyRefFlags,

 mdAssemblyRef *pmar)

Each call to DefineAssemblyRef creates a row in the 10-column “AssemblyRef”
metadata table. In addition:

pbOriginator/cbOriginator are stored in the Blob heap (see section15.1.2)

szName is stored in the String heap (see section 15.1.1)

The fields of pMetaData are disposed as follows:

• szLocale stored in String heap (see section 15.1.1)

• rProcessor/ulProcessor stored into successive rows of the 1-column
“AssemblyRefProcessor” metadata table

• rOS/ulOS – an array of OSINFOs (with fields dwOSPlatformId,
dwOSMajorVersion, dwOSMinorVersion) – stored into successive rows of the
3-column AssemblyRefOS” metadata table

• szConfiguration stored in the String heap (see section 15.1.1)

pbHashValue/cbHashValue are stored in the Blob heap (see section 15.1.2)

Metadata API

Page 161

The following arguments are informational, and are ignored for execution:
pMetaData->rProcessor, pMetaData->rOS, pMetaData->szConfiguration,
pbHashValue/cbHashValue.

15.8.24 DefineTypeRefByName
HRESULT DefineTypeRefByName(mdToken tkResScope,

 LPCWSTR wzName,

 mdTypeRef *ptr)

Each call to DefineTypeRefByName creates a row in the 3-column “TypeRef” table.
In addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4) – it is the essence of a TypeRef

15.8.25 DefineImportType
HRESULT DefineImportType(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue,

 ULONG cbHashValue,

 IMetaDataImport *pImport,

 mdTypeDef tdImport,

 IMetaDataAssemblyEmit *pAssemEmit,

 mdTypeRef *ptr)

This method looks up the metadata in another module and uses it to create a
TypeRef in the current scope. It consumes space in exactly the same manner as a
call to DefineTypeRefByName (see section 15.8.24)

15.8.26 DefineMemberRef
HRESULT DefineMemberRef(mdToken tkImport,

 LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig,

 ULONG cbSig,

 mdMemberRef *pmr)

Each call to DefineMemberRef creates a row in the 3-column “MemberRef” table. In
addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4) – it is essential to a MemberRef

pvSig/cbSig are stored in the Blob heap (see section 15.1.2)

15.8.27 DefineImportMember
HRESULT DefineImportMember(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue,

Metadata API

Page 162

 ULONG cbHashValue,

 IMetaDataImport *pImport,

 mdToken mbMember,

 IMetaDataAssemblyEmit *pAssemEmit,

 mdToken tkParent,

 mdMemberRef *pmr)

This method looks up the metadata in another module and uses it to create a
MemberRef in the current scope. It consumes space in exactly the same manner as
a call to DefineMemberRef (see section 15.8.26)

15.8.28 DefineModuleRef
HRESULT DefineModuleRef(LPCWSTR wzName,

 mdModuleRef *pmur)

Each call to DefineModuleRef creates a row in the 1-column “ModuleRef” table. In
addition:

wzName is stored in the String heap (see section 15.1.1). You must supply a non-
null wzName (see section 15.4) – it is essential to a ModuleRef

15.8.29 SetParent
HRESULT SetParent(mdMemberRef mr,

 mdToken tk)

This method changes updates a row in the 3-column “MemberRef” table. It therefore
consumes no extra space (see section 15.1.4)

15.8.30 DefineProperty
HRESULT DefineProperty(mdTypeDef td,

 LPCWSTR wzProperty,

 DWORD dwPropFlags,

 PCCOR_SIGNATURE pvSig,

 ULONG cbSig,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue,

 mdMethodDef mdSetter,

 mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[],

 mdFieldDef fdBackingField,

 mdProperty *pmdProp)

Each call to DefineProperty creates a row in the 2-column “PropertyMap” table.

Each call to DefineProperty also creates a row in the 4-column “Property” table.

Metadata API

Page 163

Each call to DefineProperty also creates rows in the 3-column “MethodSemantics”
table. It amounts to one row for the mdGetter argument; one for the mdSetter
argument; and one for each element of the rmdOtherMethods argument.

In addition:

wzProperty is stored in the String heap (see section 15.1.1). You must supply a
non-null wzProperty (see section 15.4)

pvSig/cbSig are stored in the Blob heap (see section 15.1.2) and are required.

pValue/cchValue are stored in the Blob heap (see section 15.1.2). These are entirely
optional (used to record a default value for the property – that value can be
inspected at compile-time). If you choose to store such a value, it consumes space
in both the Blob heap, as well as one row in the 3-column “Constant” table.

15.8.31 SetPropertyProps
HRESULT SetPropertyProps(mdProperty pr,

 DWORD dwPropFlags,

 DWORD dwDefType,

 void const *pValue,

 ULONG cchValue,

 mdMethodDef mdSetter,

 mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[],

 mdFieldDef fdBackingField)

You consume extra space (beyond that already consumed by the DefineProperty call
for this Property), as follows:

If this call to SetPropertyProps supplies dwDefType, pValue, cchValue for the first
time for this Property (ie, you did not supply them in any previous calls to
DefineProperty or SetPropertyProps), then, it creates a row in the 3-column
“Constant” table, and stores pValue/cchValue in the Blob heap. Contrariwise, if you
already supplied dwDefType, pValue, cchValue for this property, it simply consumes
space in the Blob heap for the new pValue/cchValue.

If this call to SetPropertyProps supplies mdSetter, mdGetter or any
rmdOtherMethods for the first time for this Property (ie, you did not supply them in
any previous calls to DefineProperty or SetPropertyProps), then, it creates a row in
3-column “MethodSemantics” table for each new method.

Changes to the value of dwPropFlags or fdBackingField simply updates a column in
an existing table, consuming no extra space.

15.8.32 DefineEvent
HRESULT DefineEvent(mdTypeDef td,

 LPCWSTR wzEvent,

 DWORD dwEventFlags,

 mdToken tkEventType,

 mdMethodDef mdAddOn,

Metadata API

Page 164

 mdMethodDef mdRemoveOn,

 mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[],

 mdEvent *pmdEvent)

Events are stored using tables and techniques very similar to Properties (see section
15.8.30).

Each call to DefineEvent creates one row in the 2-column “EventMap” table.

Each call to DefineEvent also creates a row in the 4-column “Event” table.

Each call to DefineEvent also creates rows in the 3-column “MethodSemantics” table.
This amounts to one row for the mdAddOn method; one for the mdRemoveOn
method; one for the mdFire method; and one for each element of the
rmdOtherMethod argument.

In addition:

wzEvent is stored in the String heap (see section 15.1.1). You must supply a non-
null wzEvent (see section 15.4)

15.8.33 SetEventProps
HRESULT DefineEvent(mdEvent ev,

 DWORD dwEventFlags,

 mdToken tkEventType,

 mdMethodDef mdAddOn,

 mdMethodDef mdRemoveOn,

 mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[])

You consume extra space (beyond that already consumed by the DefineEvent call for
this Event), as follows:

If this call to SetEventProps supplies mdAddOn, mdRemoveOn or any
rmdOtherMethod for the first time for this Event (ie, you did not supply them in any
previous calls to DefineEvent or SetEventProps), then, it creates a row in 3-column
“MethodSemantics” table for each new method.

Changes to the value of dwEventFlags or tkEventType simply updates a column in an
existing table, consuming no extra space.

15.8.34 SetClassLayout
HRESULT SetClassLayout(mdTypeDef td,

 DWORD dwPackSize,

 COR_FIELD_OFFSET rFieldOffsets[],

 ULONG ulClassSize)

Each call to SetClassLayout creates a row in the 2-column “ClassLayout” table.

Metadata API

Page 165

If you supply rFieldOffsets then the call also creates one row in the 2-column
“FieldLayout” table, for each element in the rFieldOffsets array. (The two parts of
each COR_FIELD_OFFSET supply the values for those two columns).

Calling this method to re-set any values consumes no extra space, so long as those
values were previously defined; on the contrary, if you supply more elements in the
rFieldOffsets array, each new element consumes one (2-column) row in the
“FieldLayout” table.

15.8.35 GetTokenFromSig
HRESULT GetTokenFromSig(PCCOR_SIGNATURE pvSig,

 ULONG cbSig,

 mdSignature *pmsig)

Each call to GetTokenFromSig creates a row in the 1-column “StandAloneSig” table.
In addition:

pvSig/cbSig are stored in the Blob heap (see section 15.1.2)

15.8.36 DefineUserString
HRESULT DefineUserString(LPCWSTR wzString,

 ULONG cchString,

 mdString *pstk)

Each call to DefineUserString stores wsString/cchString into the UserString heap (see
section 15.1.3). Unlike almost every other call to define something in metadata, it
does not create a row in any metadata table. The token handed back (in pstk)
indexes the string directly in the heap.

15.8.37 DeleteToken
HRESULT DeleteToken(mdToken tk)

Recall that you can ‘delete’ only the following kinds of token – TypeDef, MethodDef,
FieldDef, Event, Property, ExportedType and CustomAttribute.

Calling DeleteToken marks corresponding rows in metadata tables as ‘deleted’. But
it reclaims no physical space in-memory. It doesn’t even reclaim that ‘deleted’ space
when it saves the in-memory metadata is saved to disk. This is because if we were
to compress out such ‘deleted’ rows in a table, it would cause a “token remap” –
metadata tokens are, in effect, simply row numbers in their corresponding metadata
table. But the compiler may have already made use of these assigned tokens (for
example, embedding them into the MSIL stream it generates); if we were to change
their values, the compiler would have to participate in that “token remap” – which
most compilers avoid, like the plague.

