
Profiling

Page 2

Common Language Runtime

Profiling

This is preliminary documentation and subject to change

Last updated: 2 July 2001

Profiling

Page 3

Table of Contents
1 Profiling – Introduction ...8
2 Goals for the Profiling APIs ..8
3 Non-goals for the Profiling APIs..9
4 Profiling APIs – Overview ..9
5 Profiling APIs – Recurring Concepts ..11

5.1 IDs..11
5.2 Return Values ...12
5.3 Notification Thread ..12
5.4 Nesting of Notifications ..12
5.5 GC-Safe Callouts...13
5.6 How to profile a NT Service ..13

6 ICorProfilerCallback – Details...14
6.1 Runtime...14

6.1.1 Initialize..14
6.1.2 Shutdown..15

6.2 AppDomain ..15
6.2.1 AppDomainCreationStarted ...15
6.2.2 AppDomainCreationFinished ..16
6.2.3 AppDomainShutdownStarted ...16
6.2.4 AppDomainShutdownFinished ..16

6.3 Assembly ...17
6.3.1 AssemblyLoadedStarted..17
6.3.2 AssemblyLoadFinished ..17
6.3.3 AssemblyUnloadStarted ..17
6.3.4 AssemblyUnloadFinished ...18

6.4 Module...18
6.4.1 ModuleLoadStarted...18
6.4.2 ModuleLoadFinished..18
6.4.3 ModuleUnloadStarted..19
6.4.4 ModuleUnloadFinished ..19
6.4.5 ModuleAttachedToAssembly...19

6.5 Class ...20
6.5.1 ClassLoadStarted ...20
6.5.2 ClassLoadFinished ..20

Profiling

Page 4

6.5.3 ClassUnloadStarted ..20
6.5.4 ClassUnloadFinished ...21

6.6 Function...21
6.6.1 JITCompliationStarted...21
6.6.2 JitCompilationFinished ..21
6.6.3 FunctionUnloadStarted..22
6.6.4 JITCachedFunctionSearchStarted ...22
6.6.5 JITCachedFunctionSearchFinished ..23
6.6.6 JITFunctionPitched ...23
6.6.7 JITInlining...24

6.7 Thread...24
6.7.1 ThreadCreated...24
6.7.2 ThreadDestroyed..25
6.7.3 ThreadAssignedToOSThread ..25

6.8 Remoting ...25
6.8.1 RemotingClientInvocationStarted ...26
6.8.2 RemotingClientSendingMessage...26
6.8.3 RemotingClientReceivingReply ...26
6.8.4 RemotingClientInvocationFinished ..26
6.8.5 RemotingServerReceivingMessage..27
6.8.6 RemotingServerInvocationStarted..27
6.8.7 RemotingServerInvocationReturned..27
6.8.8 RemotingServerSendingReply ..27

6.9 Transitions ...28
6.9.1 UnmanagedToManagedTransition ...28
6.9.2 ManagedToUnmanagedTransition ...28
6.9.3 COMClassicVTableCreated ...29
6.9.4 COMClassicVTableDestroyed..29

6.10 Runtime Suspension ..30
6.10.1 RuntimeSuspendStarted..30
6.10.2 RuntimeSuspendFinished ..31
6.10.3 RuntimeSuspendAborted...31
6.10.4 RuntimeResumeStarted ..31
6.10.5 RuntimeResumeFinished ...31
6.10.6 RuntimeThreadSuspended...32
6.10.7 ThreadResumed...32

Profiling

Page 5

6.11 Garbage Collection ..32
6.11.1 ObjectAllocated..33
6.11.2 ObjectsAllocatedByClass..33
6.11.3 MovedReferences ...34
6.11.4 ObjectReferences ...36
6.11.5 RootReferences..36

6.12 Exceptions..37
6.12.1 ExceptionThrown..39
6.12.2 ExceptionSearchFunctionEnter ...40
6.12.3 ExceptionSearchFunctionLeave ..40
6.12.4 ExceptionSearchFilterEnter..40
6.12.5 ExceptionSearchFilterLeave ...40
6.12.6 ExceptionSearchCatcherFound ...40
6.12.7 ExceptionOSHandlerEnter..41
6.12.8 ExceptionOSHandlerLeave...41
6.12.9 ExceptionUnwindFunctionEnter ..41
6.12.10 ExceptionUnwindFunctionLeave ...41
6.12.11 ExceptionUnwindFinallyEnter ...41
6.12.12 ExceptionUnwindFinallyLeave ..42
6.12.13 ExceptionCatcherEnter..42
6.12.14 ExceptionCatcherLeave...42
6.12.15 ExceptionCLRCatcherFound ...43
6.12.16 ExceptionCLRCatcherExecute...43

7 ICorProfilerInfo ..44
7.1 BeginInprocDebugging...44
7.2 EndInprocDebugging ...45
7.3 ForceGC...45
7.4 GetAppDomainInfo..45
7.5 GetAssemblyInfo...46
7.6 GetClassFromObject ..46
7.7 GetClassFromToken...46
7.8 GetClassIDInfo ...47
7.9 GetCodeInfo ...47
7.10 GetCurrentThreadID ..48
7.11 GetEventMask...48
7.12 GetFunctionFromIP..49

Profiling

Page 6

7.13 GetFunctionFromToken ..49
7.14 GetFunctionInfo ..49
7.15 GetHandleFromThread ...50
7.16 GetILFunctionBodyAllocator..50
7.17 GetILFunctionBody ..51
7.18 GetILToNativeMapping...51
7.19 GetInprocInspectionInterface..52
7.20 GetInprocInspectionThisThread...52
7.21 GetModuleInfo ..52
7.22 GetModuleMetaData ..53
7.23 GetObjectSize...53
7.24 GetThreadContext ...54
7.25 GetThreadInfo ..54
7.26 GetTokenAndMetadataFromFunction..54
7.27 IsArrayClass ...55
7.28 SetEnterLeaveFunctionHooks..55
7.29 SetEventMask...56
7.30 SetFunctionIDMapper ..56
7.31 SetFunctionReJIT ..56
7.32 SetILFunctionBody ..56
7.33 SetILInstrumentedCodeMap ...57

8 Memory Allocation Interface (ImethodMalloc) ..59
8.1 Alloc ..59

9 Profiling Enumerations ..60
9.1 COR_PRF_MONITOR ..60
9.2 COR_PRF_MISC ..61
9.3 COR_PRF_JIT_CACHE ..62
9.4 COR_PRF_SUSPEND_REASON...62
9.5 COR_PRF_TRANSITION_REASON ..62
9.6 CorDebugIlToNativeMappingTypes...63
9.7 COR_PRF_JIT_MAP..63

10 Profiling Type Definitions...64
10.1 COR_IL_MAP ..64
10.2 COR_DEBUG_IL_TO_NATIVE_MAP...64
10.3 FunctionIDMapper ...65
10.4 FunctionEnter ...65

Profiling

Page 7

10.5 FunctionExit ...65
10.6 FunctionTailcall ...65

11 Security Issues in Profiling ..67
12 Combining Managed and Unmanaged Code in a Code Profiler68
13 Profiling an application with precompiled components...............................69
14 Profiling Unmanaged Code...70

Profiling

Page 8

1 Profiling – Introduction
Profiling, in this document, means monitoring the performance and memory usage of
a program, which is executing on the Common Language Runtime (CLR). This
document details the interfaces, provided by the Runtime, to access such
information. Typically, a very limited audience will use these APIs – developers of
profiling tools.

Just to give the flavor, a typical use for profiling is to measure how much time
(elapsed, or wall-clock, and/or CPU time) is spent within each routine, or within all
code that is executed from a given root routine. To do this, a profiler asks the
Runtime to inform it whenever execution enters or leaves each routine; the profiler
notes the wall-clock and CPU time for each such event, and accumulates the results
at the end of the program. Note that the term routine is being in this document to
indicate a section of code that has an entry point and an exit point. Different
languages use different names for this same concept -- function, procedure, method,
co-routine, subroutine, etc.

Profiling a CLR program requires more support than profiling conventionally compiled
machine code. This is because the CLR has introduced new concepts such as
application domains, garbage collection, managed exception handling, JIT
compilation of code (converting Microsoft Intermediate Language into native machine
code) etc that the existing conventional profiling mechanisms are unable to identify
and provide useful information. The profiling APIs provide this missing information in
an efficient way that causes minimal impact on the performance of the CLR.

Note that JIT-compiling routines at runtime provide good opportunities, as the APIs
allow a profiler to change the in-memory MSIL code stream for a routine, and then
request that it be JIT-compiled anew. In this way, the profiler can dynamically add
instrumentation code to particular routines that need deeper investigation. Although
this approach is possible in conventional scenarios, it’s much easier to do this for the
CLR.

2 Goals for the Profiling APIs
• Expose information that existing profilers will require for a user to determine and

analyze performance of a program run on the CLR. Specifically:

� Common Language Runtime startup and shutdown events
� Application domain creation and shutdown events
� Assembly loading and unloading events
� Module load/unload events
� Com VTable creation and destruction events
� JIT-compiles, and code pitching events
� Class load/unload events
� Thread birth/death/synchronization
� Routine entry/exit events
� Exceptions
� Transitions between managed and unmanaged execution
� Transitions between different Runtime contexts
� Information about Runtime suspensions

Profiling

Page 9

� Information about the Runtime memory heap and garbage collection activity

• Callable from any COM-compatible language

• Efficient, in terms of CPU and memory consumption – the act of profiling should
not cause such a big change upon the program being profiled that the results are
misleading

• Useful to both sampling and non-sampling profilers. [A sampling profiler inspects
the profilee at regular clock ticks – maybe 5 milliseconds apart, say. A non-
sampling profiler is informed of events, synchronously with the thread that
causes them]

3 Non-goals for the Profiling APIs
• Support for profiling unmanaged code. Existing mechanisms must instead be

used to profile unmanaged code. The CLR profiling APIs work only for managed
code. However, we provide the profiler with managed/unmanaged transition
events to determine the boundaries between managed and unmanaged code.

• Information needed to check bounds. The CLR provides intrinsic support for
bounds checking of all managed code.

The CLR code profiler interfaces do not support remote profiling due to the following
reasons:

• It is necessary to minimize execution time using these interfaces so that profiling
results will not be unduly affected. This is especially true where execution
performance is being monitored. However, it is not a limitation when the
interfaces are used to monitor memory usage or to obtain Runtime information
on stack frames, objects, etc.

• The code profiler needs to register one or more callback interfaces with the
Runtime on the local machine on which the application being profiled runs. This
limits the ability to create a remote code profiler.

4 Profiling APIs – Overview
The profiling APIs within CLR allow to the user to monitor the execution and memory
usage of a running application. Typically, these APIs will be used to write a code
profiler package. In the sections that follow, we will talk about a profiler as a
package built to monitor execution of any managed application.

The profiling APIs are implemented as two COM interfaces, shown in the diagram
below. One is implemented by the Runtime (ICorProfilerInfo), the other is
implemented by the profiler (ICorProfilerCallback).

Profiling

Page 10

The ICorProfilerCallback interface consists of methods with names like
ClassLoadStarted, ClassLoadFinished, FunctionEnter, FunctionLeave. So, each time
the CLR loads/unloads a class, or enters/leaves a function, it calls the corresponding
method in the profiler’s ICorProfilerCallback interface. (And similarly for all of the
other notifications; see later for details)

So, for example, a profiler could measure code performance via the two notifications
FunctionEnter and FunctionLeave. It simply timestamps each notification,
accumulates results, then outputs a list indicating which functions consumed most
cpu time, or most wall-clock time, during execution of the application.

The ICorProfilerCallback interface can be considered to be the “notifications API”.

The other interface involved for profiling is ICorProfilerInfo. The profiler calls this, as
required, to obtain more information to help its analysis. For example, whenever the
CLR calls FunctionEnter it supplies a value for the FunctionId. The profiler can
discover more information about that FunctionId by calling the
ICorProfilerInfo::GetFunctionInfo to discover the function’s parent class, its name,
etc, etc.

The picture so far describes what happens once the application and profiler are
running. But how are the two connected together when an application is started?
Well, the CLR makes the connection during its initialization in each process. It
decides whether to connect to a profiler, and which profiler that should be,
depending upon the value for two environment variables, checked one after the
other:

• Cor_Enable_Profiling – only connect with a profiler if this environment variable
exists and is set to a non-zero value.

• Cor_Profiler – connect with the profiler with this CLSID or ProgID (which must
have been stored previously in the Registry). The Cor_Profiler environment
variable is defined as a string: eg
 set Cor_Profiler={32E2F4DA-1BEA-47ea-88F9-C5DAF691C94A}
or
 set Cor_Proflier="MyProfiler"
The profiler class is the one that implements ICorProfilerCallback

Application

Runtime Profiler

ICorProfilerInfo

ICorProfilerCallback

Profiling

Page 11

When both checks above pass, the CLR creates an instance of the profiler in a similar
fashion to CoCreateInstance. The profiler is not loaded through a direct call to
CoCreateInstance so that a call to CoInitialize may be avoided, which requires
setting the threading model. It then calls the ICorProfilerCallback::Initialize method
in the profiler. The signature of this method is:

HRESULT Initialize(IUnknown *pICorProfilerInfoUnk, DWORD
*pdwRequestedEvents)

The profiler must QueryInterface pICorProfilerInfoUnk for an ICorProfilerInfo
interface pointer and save it so that it can call for more info during later profiling. It
then sets the pdwRequestedEvents bitmask to say which categories of notifications it
is interested in. For example:

*pdwRequestedEvents = COR_PRF_MONITOR_ENTERLEAVE |
COR_PRF_MONITOR_GC

if interested only in function enter/leave notifications and garbage collection
notifications. The profiler then simply returns, and we’re off and running!

By setting the notifications mask in this way, the profiler can limit which notifications
it receives. This obviously helps the user build a simpler, or special-purpose profiler;
it also reduces wasted cpu time in sending notifications that the profiler would simply
‘drop on the floor’ (see later for details)

Note that only one profiler can be profiling a process at one time in a given
environment. In different environments it is possible to have two different profilers
registered in each environment, each profiling separate processes..

Certain profiler events are IMMUTABLE which means that once they are set in the
IcorProfilerCallback::Initialize callback they cannot be turned off using
ICorProfilerInfo::SetEventMask(). Trying to change an immutable event will result in
SetEventMask returning a failed HRESULT.

The profiler must be implemented as an inproc32 COM server – a DLL, which is
mapped into the same address space as the process being profiled. We do not
support any other type of COM server; if a profiler, for example, wants to monitor
applications from a remote computer, it must implement ‘collector agents’ on each
machine, which batch results and communicate them to the central data collection
machine.

5 Profiling APIs – Recurring Concepts
This brief section explains a few concepts that apply throughout the profiling APIs,
rather than repeat them with the description of each method.

5.1 IDs
Runtime notifications supply an ID for reported classes, threads, AppDomains, etc.
These IDs can be used to query the Runtime for more info. These IDs are simply the
address of a block in memory that describes the item; however, they should be
treated as opaque handles by any profiler. If an invalid ID is used in any API then
the results are undefined. Most likely, the result will be an access violation. The user
has to ensure that the ID’s used are perfectly valid. The profiler does not perform
any type of validation since that would create overhead and it would slow down the
execution considerably.

Profiling

Page 12

Because IDs are simply memory addresses, ObjectIDs point into the garbage-
collected heap and may change their value with each garbage collection. Thus, an
ObjectID value is only valid between the time it is received and when the next
garbage collection begins. The CLR also supplies notifications that allow a profiler to
update its internal maps that track objects, so that a profiler may maintain a valid
ObjectID across garbage collections.

5.2 Return Values
A profiler returns a status, as an HRESULT, for each notification triggered by the
CLR. That status may have the value S_OK or E_FAIL. Currently the Runtime
ignores this status value in every callback except ObjectReference (see method
description below).

5.3 Notification Thread
In most cases, the notifications are executed by the same thread as generated the
event. Such notifications (for example, FunctionEnter and FunctionLeave) don’t need
to supply the explicit ThreadID. Also, the profiler might choose to use thread-local
storage to store and update its analysis blocks, as compared with indexing into
global storage, based off the ThreadID of the affected thread.

Each notification documents, which thread does the call – either the thread, which
generated the event, or some utility thread (e.g. garbage collector) within the
Runtime. For any callback that might be invoked by a different thread, a user can
call the ICorProfilerInfo::GetCurrentThreadID to discover the thread that generated
the event.

Note that these callbacks are not serialized. The user must protect his code
appropriately by creating thread safe data structures and by locking the profiler code
where necessary to prevent parallel access from multiple threads. Therefore, in
certain cases it is possible to receive an unusual sequence of callbacks. For example
assume a managed application is spawning two threads, which are executing
identical code. In this case it is possible to receive a JITCompilationStarted event for
some function from one thread and before receiving the respective
JITCompilationFinished callback, the other thread has already sent a FunctionEnter
callback. Therefore the user will receive a FunctionEnter callback for a function that it
seems not fully JIT compiled yet!

5.4 Nesting of Notifications
Notifications to the profilers follow the obvious nesting sequence. For example, after
an AssemblyUnloadStarted, the profiler should expect to see a flurry of
ModuleUnloadStarted notifications; then a flurry of ClassUnloadStarted notifications;
and so on. The nesting looks like this:

Profiling

Page 13

AssemblyUnloadStarted (AssemA)
ModuleUnloadStarted (ModuleA)

ClassUnloadStarted (ClassA)
 FunctionUnloadStarted (FuncA)
 FunctionUnloadFinished (FuncA)
 . . .

ClassUnloadFinished (ClassA)
 . . .
ModuleUnloadFinished (ModuleA)
. . .

AssemblyUnloadFinished (AssemA)

5.5 GC-Safe Callouts
When the CLR calls certain functions in the ICorProfilerCallback, the Runtime cannot
perform a garbage collection until the Profiler returns control from that call. This is
because profiling services cannot always construct the stack into a state that is safe
for a garbage collection; instead we disable garbage collection around that callback.
For these cases, the Profiler should take care to return control as soon as possible.
The callbacks where this applies are:

• FunctionEnter, FunctionLeave, FunctionTailCall
• ExceptionOSHandlerEnter, ExceptionOSHandlerLeave
• ExceptionUnwindFunctionEnter, ExceptionUnwindFunctionLeave
• ExceptionUnwindFinallyEnter, ExceptionUnwindFinallyLeave
• ExceptionCatcherEnter, ExceptionCatcherLeave
• ExceptionCLRCatcherFound, ExceptionCLRCatcherExecute
• COMClassicVTableCreated, COMClassicVTableDestroyed

In addition, the following callbacks may or may not allow the Profiler to block. This
is indicated, call-by-call, via the fIsSafeToBlock argument. This set includes:

• JITCompilationStarted, JITCompilationFinished

Note that if the Profiler does block, it will delay garbage collection. This is harmless,
as long as the Profiler code itself does not attempt to allocate space in the managed
heap, which could induce deadlock.

5.6 How to profile a NT Service
Profiling is enabled through environment variables, and since NT Services are started
when the Operating System boots, those environment variables must be present and
set to the required value at that time. Thus, to profile an NT Service, the
appropriate environment variables must be set in advance, system-wide, via:

MyComputer -> Properties -> Advanced -> EnvironmentVariables -> System
Variables

Both Cor_Enable_Profiling and COR_PROFILER have to be set, and the user
must ensure that the Profiler DLL is registered. Then, the target machine should be
re-booted so that the NT Services pick up those changes. Note that this will enable
profiling on a system-wide basis. So, to prevent every managed application that is
run subsequently from being profiled, the user should delete those system
environment variables after the re-boot.

Profiling

Page 14

6 ICorProfilerCallback – Details
As explained earlier, the ICorProfilerCallback interface is the “notifications API” that a
profiler implements. Though the interface contains many methods, understanding
them is easier once someone realizes that they fall into about 12 categories, and
that often within a category, they come “four at a time”. The categories are:

Runtime, AppDomain, Assembly, Module, Class, Function, Thread, Remoting,
Transitions, Runtime Suspension, Garbage Collection, and Exceptions

If we take Modules as an example, they have four notifications, recording the birth
(start and finish) and death (start and finish) of a given Module. Their names are:

• ModuleLoadStarted, ModuleLoadFinished

• ModuleUnloadStarted, ModuleUnloadFinished

And we follow a similar naming scheme throughout the API.

Almost all of the notifications provide an ID to the item being of interest – for
example, ModuleID, ClassID, FunctionID. These are opaque 32-bit handles. A
profiler uses them to keep track of notifications (for example, the number of times
each function in an application is called). The profiler can also use that ID to ask for
more information about the item, via the ICorProfilerInfo methods provided by the
Runtime. The IDs are valid to use until a callback is received indicating the specific
ID has been unloaded, deleted or otherwise invalidated.

The next sections list all the methods on ICorProfilerCallback, gathered together into
categories

6.1 Runtime

6.1.1 Initialize
The CLR calls Initialize to setup the code profiler whenever a new CLR application is
started. The call provides an IUnknown interface pointer that should be QI'd for an
ICorProfilerInfo interface pointer. Note that in that callback the code profiler has to
specify which events is interested in monitoring by calling
ICorProfilerInfo::SetEventMask().

HRESULT Initialize(IUnknown *pICorProfilerInfoUnk)

Parameter Description

[in] pICorProfilerInfoUnk A pointer to an IUnknown object within the CLR, which
can be QueryInterface’d for an ICorProfilerInfo
interface pointer. The profiler can call methods in
this object to obtain more info about notifications

Profiling

Page 15

6.1.2 Shutdown
The CLR calls Shutdown to notify the code profiler that the application is exiting.
This is the profiler's last opportunity to safely call functions on the ICorProfilerInfo
interface. After returning from this function the Runtime will proceed to unravel its
internal data structures and any calls to ICorProfilerInfo are undefined in their
behavior.

HRESULT Shutdown()

After Shutdown is fired from the EE, all the profiler notifications that were specified
for the current profiler are internally turned off, except certain IMMUTABLE events
(see section 9.1).

Note that Shutdown will only fire where the managed application that is being
profiled was started running managed code (that’s to say, the bottom frame on the
process’ stack is managed). If the application being profiled started life as
unmanaged code, which later ‘jumped into’ managed code (thereby creating an
instance of the CLR), then Shutdown will not fire. In these cases, the profiler should
include a DllMain routine in their library that uses Win32’s DLL_PROCESS_DETACH
call to free any resources and perform tidy-up processing of its data (flush traces to
disk, etc) [the issue is that by the time CLR is executing, and in a position to call
Shutdown, the profiler DLL has already been unloaded by Win32].

Even more extreme is the case where the process being profiled is ‘killed’ by a call to
Win32’s TerminateProcess. In this case, neither Shutdown nor DllMain fires, so the
profiler must cope as best it can with required tidy-up. These scenarios may arise
under Win9x when an unhandled exception is being thrown.

Note also that during shutdown, the runtime is possible to violently kill certain
managed threads (this happens only if they are “background” managed threads) that
remain alive for an extended period of time during shutdown. As a result, all the
notifications related to those threads will stop abruptly and the code profiler will have
to simulate those events if it counts on receiving them.

6.2 AppDomain

6.2.1 AppDomainCreationStarted
Called when an AppDomain creation has begun. The id is not valid for any
information request until after the AppDomain has been fully created. One may only
cache the id provided in AppDomainCreationStarted for later use.

HRESULT AppDomainCreationStarted(AppDomainID appDomainId)

Parameter Description

[in] appDomainId ID for the AppDomain being created

Profiling

Page 16

6.2.2 AppDomainCreationFinished
Called when an AppDomain creation has finished. The hrStatus provides the success
or failure of the operation.

HRESULT AppDomainCreationFinished(AppDomainID appDomainId,

 HRESULT hrStatus)

Parameter Description

[in] appDomainId ID for the AppDomain just created

[in] hrStatus Status for whether the AppDomain creation succeeded

6.2.3 AppDomainShutdownStarted
Called when an AppDomain shutdown is starting. The AppDomain specified by the
appDomainId is still valid to use.

HRESULT AppDomainShutdownStarted(AppDomainID appDomainId)

Parameter Description

[in] appDomainId ID for the AppDomain being shut down

6.2.4 AppDomainShutdownFinished
Notify that Runtime has finished shutting down an AppDomain. The appDomainId
cannot be used anymore for any queries to the Runtime for info during or after this
notification – it is supplied only so the profiler knows which AppDomain has just been
shut down. The hrStatus provides the success or failure of the operation.

HRESULT AppDomainShutdownFinished(AppDomainID appDomainId,

 HRESULT hrStatus)

Parameter Description

[in] appDomainId ID for the AppDomain just shut down

[in] hrStatus Status for whether the AppDomain shutdown succeeded

Profiling

Page 17

6.3 Assembly

6.3.1 AssemblyLoadedStarted
It would be expected that the CLR would notify an assembly load, followed by one or
more module loads for that assembly. However, what actually happens is that
Runtime notifies the profiler of a module load, then the load of its containing
assembly; after that the profiler is possible top receive zero or more notifications of
module loads for that assembly. Thus, the “first child begets the parent”.

There is another, unusual path through module loading to be aware of. That is when
a module is loaded via a legacy mechanism, such as a call to the Win32 LoadLibrary
routine, or implicitly due to entries in the Import Address Table of the current image.
In such cases, the user will see a module load notification. Some time later (when
the Runtime actually needs to execute code from that ‘legacy’ module) it will
discover which assembly it is a part of. At that point, Runtime will notify the profiler
by firing a ModuleAttachedToAssembly callback.

Called when an assembly load has begun. The id is not valid for any information
request until after the assembly has been fully loaded. One may only cache the id
provided in AssemblyLoadStarted for later use.

HRESULT AssemblyLoadStarted(AssemblyID assemblyId)

Parameter Description

[in] assemblyID ID for the assembly being loaded

6.3.2 AssemblyLoadFinished
Called when an assembly load has begun. The id is now valid for any information
request through the ICorProfilerInfo interface. The hrStatus provides the success or
failure of the operation.

HRESULT AssemblyLoadFinished(AssemblyID assemblyId,

 HRESULT hrStatus)

Parameter Description

[in] assemblyId ID for the assembly just loaded

[in] hrStatus Status for whether the assembly load succeeded

6.3.3 AssemblyUnloadStarted
Called before and after an assembly is unloaded. AssemblyUnloadStarted is the last
point at which the assemblyId is valid for calls to the ICorProfilerInfo interface.

HRESULT AssemblyUnloadStarted(AssemblyID assemblyId)

Profiling

Page 18

Parameter Description

[in] assemblyId ID for the assembly being unloaded

6.3.4 AssemblyUnloadFinished
Notify that Runtime has finished unloading an assembly. The assemblyId cannot be
used to query the Runtime for info after this notification – it is supplied only so the
profiler knows which assembly has just been unloaded. The hrStatus provides the
success or failure of the operation.

HRESULT AssemblyUnloadFinished(AssemblyID assemblyId,

 HRESULT hrStatus)

Parameter Description

[in] assemblyId ID for the assembly just unloaded

[in] hrStatus Status for whether the assembly unload succeeded

Note that currently the profiling API does not provide any notification about shared
assemblies.

6.4 Module

6.4.1 ModuleLoadStarted
The CLR calls ModuleLoadStarted to notify the code profiler that a module is about to
be loaded. The moduleId is not valid in calls to ICorProfilerInfo until the profiler
receives a ModuleLoadFinished callback for the same moduleId

HRESULT ModuleLoadStarted(ModuleID moduleId)

Parameter Description

[in] moduleId ID for the Module being loaded

6.4.2 ModuleLoadFinished
The Runtime calls ModuleLoadFinished to notify the code profiler that a module has
been loaded. The hrStatus provides the success or failure of the operation.

HRESULT ModuleLoadFinished(ModuleID moduleId,

 HRESULT hrStatus)

Profiling

Page 19

Parameter Description

[in] moduleId ID for the Module just loaded

[in] hrStatus Status for whether the Module load succeeded

6.4.3 ModuleUnloadStarted
Called before a module is being unloaded. Use this event to collect final statistics
that require the moduleId to be valid. After returning from ModuleUnloadStarted,
the moduleId is no longer valid.

HRESULT ModuleUnloadStarted(ModuleID moduleId)

Parameter Description

[in] moduleId ID for the Module being unloaded

6.4.4 ModuleUnloadFinished
Notify that Runtime has finished unloading a Module. The moduleId cannot be used
to query the Runtime for info after this notification – it is supplied only so the profiler
knows which Module just been unloaded. The hrStatus provides the success or
failure of the operation.

HRESULT ModuleUnloadFinished(ModuleID moduleId,

 HRESULT hrStatus)

Parameter Description

[in] moduleId ID for the Module just shut unloaded

[in] hrStatus Status for whether the Module unload succeeded

6.4.5 ModuleAttachedToAssembly
The CLR calls ModuleAttachedToAssembly to notify the code profiler that a module
has been attached to an assembly. A module can get loaded through legacy means,
(i.e., Import Address Table or LoadLibrary) or through a metadata reference. The
Runtime loader therefore has many code paths for determining what assembly a
module lives in. It is therefore possible that after a ModuleLoadFinished event, the
module does not know what assembly it is in and getting the parent assemblyId is
not possible. This event is fired when the module is officially attached to its parent
assembly. Calling GetModuleInfo after this point will return the proper parent
assembly.

HRESULT NotifyModuleAttachedToAssembly(ModuleID moduleId,

 AssemblyID assemblyId)

Profiling

Page 20

Parameter Description

[in] moduleId The ModuleID of the module loaded.

[in] assemblyId The AssemblyID of the parent assembly.

6.5 Class

6.5.1 ClassLoadStarted
Notify that Runtime is starting to load a class. The classId cannot be used to query
the Runtime for info until after the class load is finished. The classId is not valid for
calls to the ICorProfilerInfo interface until the profiler receives a ClassLoadFinished
event for the same classId.

HRESULT ClassLoadStarted(ClassID classId)

Parameter Description

[in] classId ID for the class being loaded

6.5.2 ClassLoadFinished
The CLR calls ClassLoadFinished to notify the code profiler that a class has been
loaded. The classId is now valid for calls to the ICorProfilerInfo interface. The
hrStatus provides the success or failure of the operation.

HRESULT ClassLoadFinished(ClassID classId,

 HRESULT hrStatus)

Parameter Description

[in] classId ID for the Class just created

[in] hrStatus Status for whether the class load succeeded

6.5.3 ClassUnloadStarted
The given class is about to be unloaded. This event can be used to gather final
status and clean up anything that requires the classId to be valid. After returning
from this callback the classId is no longer valid in calls to the ICorProfilerInfo
interface.

HRESULT ClassUnloadStarted(ClassID classId)

Profiling

Page 21

Parameter Description

[in] classId ID for the class being unloaded

6.5.4 ClassUnloadFinished
Notify that Runtime has finished unloading a class. The classId cannot be used to
query the Runtime for info after this notification – it is supplied only so the profiler
knows which class has just been unloaded. The hrStatus provides the success or
failure of the operation.

HRESULT ClassUnloadFinished(ClassID classId,

 HRESULT hrStatus)

Parameter Description

[in] classId ID for the class just unloaded

[in] hrStatus Status for whether the class unload succeeded

6.6 Function

6.6.1 JITCompliationStarted
The CLR calls JITCompilationStarted to notify the code profiler that the JIT compiler
is starting to compile a function.

The fIsSafeToBlock argument tells the profiler whether or not blocking will affect the
operation of the Runtime. If true, blocking may cause the Runtime to wait for the
calling thread to return from this callback, especially if the Runtime is attempting a
suspension. Although this will not harm the Runtime, it will skew the profiling results.

HRESULT JITCompilationStarted(FunctionID functionId,

 BOOL fIsSafeToBlock)

Parameter Description

[in] functioned ID for the function being JIT-compiled

[in] fIsSafeToBlock whether it’s safe to perform a time consuming operation
while profiling

6.6.2 JitCompilationFinished
The CLR calls JITCompilationFinished to notify the code profiler that the JIT compiler
has finished compiling a function. The functionId is now valid in ICorProfilerInfo APIs.
The hrStatus provides the success or failure of the operation

The fIsSafeToBlock argument tells the profiler whether or not blocking will affect the
operation of the Runtime. If true, blocking may cause the Runtime to wait for the

Profiling

Page 22

calling thread to return from this callback. Although this will not harm the Runtime, it
will skew the profiling results.

HRESULT JITCompilationFinished(FunctionID functionId,

 HRESULT hrStatus,

 BOOL fIsSafeToBlock)

Parameter Description

[in] functionId ID for the function just created

[in] hrStatus Status for whether the JIT-compile succeeded

[in] fIsSafeToBlock whether it’s safe to perform a time consuming operation
while profiling

6.6.3 FunctionUnloadStarted
The CLR calls FunctionUnloadStarted to notify the code profiler that a function is
being unloaded. After returning from this call, the functionId is no longer valid. This
method is not implemented in the current version of the Runtime.

HRESULT FunctionUnloadStarted(FunctionID functionId)

Parameter Description

[in] functionId ID for the function being unloaded

6.6.4 JITCachedFunctionSearchStarted
This notifies the profiler when a search for a pre-compiled function is starting. The
value of pbUseCachedFunction will inform the Runtime whether it should use the
function found or not. In the latter case, Runtime will JIT-compile the function
(resulting in a matched pair of JITCompilationStarted and JITCompilationFinished
notification) instead of using the cached version. Note that the functionId is not
valid for calls to any ICorProfilerInfo APIs until the profiler has received the
corresponding JITCompilationFinished or JITCompilationSearchFinished with a result
that indicates a successful search.

HRESULT JITCachedFunctionSearchStarted(FunctionID functionId,

 BOOL *pbUseCachedFunction)

Profiling

Page 23

Parameter Description

[in] functionId ID for the function being unloaded

[out] pbUseCachedFunction • if true, the EE uses the cached function (if
applicable)

• if false, the EE jits the function instead of using
a install-time code generated version.

6.6.5 JITCachedFunctionSearchFinished
Notify that Runtime has finished searching for a previously JIT compiled function.
This notification occurs only when a module is found to contain install-time
generated code. The result indicates whether it found the function or not.

HRESULT JITCachedFunctionSearchFinished(FunctionID functionId,

 COR_PRF_JIT_CACHE result)

Parameter Description

[in] functionId ID for the function being searched for

[in] result Whether function was found in JIT cache

There are two possible results:

• COR_PRF_CACHED_FUNCTION_FOUND

• COR_PRF_CACHED_FUNCTION_NOT_FOUND

Note that the COR_PRF_JIT_CACHE enum at the moment has only two values – in
effect, found or not found. We keep it as an enum (rather than use a BOOL) as a
placeholder for future extensions – for example, to report the version of the JIT
compiled function that was found as current or old.

6.6.6 JITFunctionPitched
The CLR calls JITFunctionPitched to notify the profiler that a JIT compiled function
was removed from memory. If the pitched function is called in the future, the
profiler will receive new JIT compilation events as it is re-JIT compiled. The
functionId is not valid until it is re-JIT compiled. When it is re-JIT compiled, it will
use the same functionId value.

HRESULT JITFunctionPitched(FunctionID functionId)

Profiling

Page 24

Parameter Description

[in] functionId ID for the function that is being pitched.

6.6.7 JITInlining
The Runtime calls JITInlining to notify the profiler that the JIT is about to inline
calleeId into callerId. Set pfShouldInline to FALSE to prevent the callee from being
inlined into the caller, and set to TRUE to allow the inline to occur.

Note: Inlined functions do not provide Enter/Leave events, so if the user is trying
to get an accurate call-graph, they should set FALSE. Be aware that setting FALSE
will affect performance, since inlining typically increases speed and reduces separate
JIT events for the inlined method.

HRESULT JITInlining(FunctionID callerId,

 FunctionID calleeId,

 BOOL *pfShouldInline)

Parameter Description

[in] callerId ID for the function that will have the callee inlined into it

[in] calleeId ID for the function to be inlined

[out] pfShouldInline • Set to TRUE to allow the inline to occur

• Set to FALSE to prevent the inline from occurring

It is possible to disable globally JIT-lining in the Initialize callback by setting the bit
COR_PRF_DISABLE_INLINING.

6.7 Thread
Unlike other categories, the runtime does not provide separate Started and Finished
notifications on thread create and destroy. This simplification was chosen simply
because the number of instructions executed for these operations by the CLR is quite
small; also, it seems reasonable that profilers should attribute the cycles consumed
to that thread, rather than gathered as “Runtime overhead”.

6.7.1 ThreadCreated
The Runtime calls ThreadCreated to notify the code profiler that a thread has been
created. The threadId is valid immediately.

HRESULT ThreadCreated(ThreadID threadId)

Parameter Description

[in] threaded ID for the thread just created

Profiling

Page 25

6.7.2 ThreadDestroyed
The Runtime calls ThreadDestroyed to notify the code profiler that a thread has been
destroyed. The threadId is no longer valid.

HRESULT ThreadDestroyed(ThreadID threadId)

Parameter Description

[in] threaded ID for the thread just destroyed

6.7.3 ThreadAssignedToOSThread
Notify that a Runtime thread has just been assigned to execute by the assigned OS
thread. During its execution lifetime, a given Runtime thread may be switched
between different threads, or not – at the whim of both the Runtime and external
components running within the process. This notification is called immediately after
a ThreadCreated event to indicate what OS thread the “newly created” Runtime
thread will execute on.

HRESULT ThreadAssignedToOSThread(ThreadID managedThreadId,

 DWORD osThreadId)

Parameter Description

[in] managedThreadId ID for the managed thread

[in] osThreadId ID for the OS thread mated with the managed thread

6.8 Remoting
Note: Eeach of the following pairs of callbacks will occur on the same thread

 RemotingClientInvocationStarted and RemotingClientSendingMessage

 RemotingClientReceivingReply and RemotingClientInvocationFinished

 RemotingServerInvocationReturned and RemotingServerSendingReply

 RemotingServerInvocationStarted and RemotingServerReceivingMessage

Note that you cannot make calls to any method from the in-process debugging API
from any of the Remoting callbacks described in this section.

There are a few issues with the remoting callbacks that should be outlined. First,
remoting function execution is not reflected by the profiler API, so the notifications
for functions that are called from the client and executed to the server are not
properly received. The actual invocation happens via a proxy object. That creates the
illusion to the profiler that certain functions get jit-compiled but they never get used.
Second, the profiler does not receive accurate notifications for asynchronous
remoting events. Both issues will be addressed in the future version.

Profiling

Page 26

6.8.1 RemotingClientInvocationStarted
The CLR calls RemotingClientInvocationStarted to notify the profiler that a remoting
call has begun. This event is the same for synchronous and asynchronous calls.

HRESULT RemotingClientInvocationStarted()

6.8.2 RemotingClientSendingMessage
The Runtime calls RemotingClientSendingMessage to notify the profiler that a
remoting call is requiring the caller to send an invocation request through a remoting
channel.

HRESULT RemotingClientSendingMessage(GUID *pCookie,

 BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will correspond
with the the value provided in RemotingServerReceivingMessage,
if the channel succeeds in transmitting the message, and if GUID
cookies are active on the server-side process. This allows easy
pairing of remoting calls, and the creation of a logical call stack.

[in] fIsAsync is true if the call is asynchronous.

6.8.3 RemotingClientReceivingReply
The Runtime calls RemotingClientReceivingReply to notify the profiler that the
server-side portion of a remoting call has completed and that the client is now
receiving and about to process the reply.

HRESULT RemotingClientReceivingReply(GUID *pCookie,

 BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will correspond
with the the value provided in RemotingServerSendingReply, if
the channel succeeds in transmitting the message, and if GUID
cookies are active on the server-side process. This allows easy
pairing of remoting calls.

[in] fIsAsync is true if the call is asynchronous

6.8.4 RemotingClientInvocationFinished
The Runtime calls RemotingClientInvocationFinished to notify the profiler that a
remoting invocation has run to completion on the client side. If the call was
synchronous, this means that it has also run to completion on the server side. If the
call was asynchronous, a reply may still be expected when the call is handled. If the
call is asynchronous, and a reply is expected, then the reply will occur in the form of
a call to RemotingClientReceivingReply and an additional call to

Profiling

Page 27

RemotingClientInvocationFinished to indicate the required secondary processing of
an asynchronous call.

HRESULT RemotingClientInvocationFinished()

6.8.5 RemotingServerReceivingMessage
The CLR calls RemotingServerReceivingMessage to notify the profiler that the
process has received a remote method invocation (or activation) request. If the
message request is asynchronous, then any arbitrary thread may service the
request.

HRESULT RemotingServerReceivingMessage(GUID *pCookie,

 BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will correspond
with the the value provided in RemotingClientSendingMessage, if
the channel succeeds in transmitting the message, and if GUID
cookies are active on the client-side process. This allows easy
pairing of remoting calls.

[in] fIsAsync is true if the call is asynchronous.

6.8.6 RemotingServerInvocationStarted
The CLR calls RemotingServerInvocationStarted to notify the profiler that the process
is invoking a method due to a remote method invocation request.

HRESULT RemotingServerInvocationStarted()

6.8.7 RemotingServerInvocationReturned
The CLR calls RemotingServerInvocationReturned to notify the profiler that the
process has finished invoking a method due to a remote method invocation request.

HRESULT RemotingServerInvocationReturned()

6.8.8 RemotingServerSendingReply
The CLR calls RemotingServerSendingReply to notify the profiler that the process has
finished processing a remote method invocation request and is about to transmit the
reply through a channel.

HRESULT RemotingServerSendingReply(GUID *pCookie,

BOOL fIsAsync)

Profiling

Page 28

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will correspond
with the value provided in RemotingClientReceivingReply, if the
channel succeeds in transmitting the message, and if GUID
cookies are active on the client-side process. This allows easy
pairing of remoting calls.

[in] fIsAsync is true if the call is asynchronous.

6.9 Transitions

6.9.1 UnmanagedToManagedTransition
The CLR calls UnmanagedToManagedTransition to notify the code profiler that a
transition from unmanaged code to managed code has occurred. The function
functionId is always the ID of the callee, and reason indicates whether the transition
was due to a call into managed code from unmanaged, or a return from an
unmanaged function called by a managed one.

If the reason is COR_PRF_TRANSITION_RETURN, then the functioned is that of the
unmanaged function, and will never have been JIT compiled. Unmanaged functions
still have some basic information associated with them, such as a name, and some
metadata.

On the other hand, if the reason is COR_PRF_TRANSITION_RETURN and the callee
was a PInvoke call indirect, then the Runtime does not know the destination of the
call and functionId will be NULL.

When the reason is COR_PRF_TRANSITION_CALL then it may be possible that the
callee has not yet been JIT-compiled.

HRESULT UnmanagedToManagedTransition(FunctionID functionId,

 COR_PRF_TRANSISTION_REASON reason)

Parameter Description

[in] functionId ID of the callee

[in] reason May be either COR_PRF_TRANSITION_CALL or
COR_PRF_TRANSITION_RETURN.

6.9.2 ManagedToUnmanagedTransition
The CLR calls ManagedToUnmanagedTransition to notify the code profiler that a
transition from managed code to unmanaged code has occurred. The functionId
corresponds always to the ID of the callee, and reason indicates whether the
transition was due to a call into unmanaged code from managed, or a return from a
managed function called by an unmanaged one.

If the reason is COR_PRF_TRANSITION_CALL, then the functionId is that of the
unmanaged function, and will never have been JIT compiled. Unmanaged functions

Profiling

Page 29

still have some basic information associated with them, such as a name, and some
metadata.

When the reason is COR_PRF_TRANSITION_CALL and the callee is a PInvoke call
indirect, then the Runtime does not know the destination of the call and functionId
will be NULL.

HRESULT UnmanagedToManagedTransition(FunctionID functionId,

 COR_PRF_TRANSISTION_REASON reason)

Parameter Description

[in] functionId ID of the callee

[in] reason May be either COR_PRF_TRANSITION_CALL or
COR_PRF_TRANSITION_RETURN.

6.9.3 COMClassicVTableCreated
Notify that the CLR has created a COM-Callable-Wrapper, or CCW; this is a proxy
object that allows unmanaged Apps to call managed COM objects

HRESULT COMClassicVTableCreated(ClassID wrappedClassId,

 REFGUID implementedIID,

 void *pVTable,

 ULONG cSlots)

Parameter Description

[in] wrappedClassId ID of the managed class the VTable gives access to

[in] implementedIID IID of the interface this VTable provides access to

[in] pVTable pointer to the VTable

[in] cSlots number of slots in the VTable

6.9.4 COMClassicVTableDestroyed
Notify that the Runtime has destroyed a CCW (see COMClassicVTableCreated,
above). This callback is likely never to occur. The Reason is that the CLR is turning
off all the notifications except the immutable ones when the shutdown callback
occurs and the VTables are released just before shutting down the CLR itself. For
that reason the shutdown callback should be considered as a “virtual”
COMClassicVTableDestroyed callback.

HRESULT COMClassicVTableDestroyed(ClassID wrappedClassId,

 REFGUID implementedIID,

 void *pVTable)

Profiling

Page 30

Parameter Description

[in] wrappedClassId ID of the managed class the VTable gave access to

[in] implementedIID IID of the interface this VTable provided access to

[in] pVTable pointer to the VTable’s interface

6.10 Runtime Suspension

6.10.1 RuntimeSuspendStarted
The CLR calls RuntimeSuspendStarted to notify the code profiler that the Runtime is
about to suspend all of the Runtime threads. All Runtime threads that are in
unmanaged code are permitted to continue running until they try to re-enter the
Runtime, at which point they will also suspend until the Runtime resumes. This also
applies to new threads that enter the Runtime. All threads within the Runtime are
either suspended immediately if they are in interruptible code, or asked to suspend
when they do reach interruptible code.

suspendReason make be any of the following values:

• COR_PRF_SUSPEND_FOR_GC: the Runtime is suspending to service a GC
request. The GC-related callbacks will occur between the
RuntimeSuspendFinished and RuntimeResumeStarted events.

• COR_PRF_SUSPEND_FOR_CODE_PITCHING: the Runtime is suspending so
that code pitching may occur. Any code pitching callbacks will occur between
the RuntimeSuspendFinished and RuntimeResumeStarted events. (Note:
code pitching is not implemented with the V1 JIT compiler)

• COR_PRF_SUSPEND_FOR_APPDOMAIN_SHUTDOWN: the Runtime is
suspending so that an AppDomain can be shut down. While the Runtime is
suspended, the Runtime will determine which threads are in the AppDomain
that is being shut down, set them to abort when they resume, and then
resumes the Runtime. There are no AppDomain-specific callbacks during this
suspension.

• COR_PRF_SUSPEND_FOR_SHUTDOWN: the Runtime is shutting down, and it
must suspend all threads to complete the operation.

• COR_PRF_SUSPEND_FOR_GC_PREP: the Runtime is preparing for a GC.

• COR_PRF_SUSPEND_FOR_INPROC_DEBUGGER: the runtime is suspending for
in-process debugging.

• COR_PRF_SUSPEND_OTHER: the Runtime is suspending for a reason other
than those listed above.

HRESULT RuntimeSuspendStarted(COR_PRF_SUSPEND_REASON suspendReason)

Parameter Description

[in] suspendReason The reason that the Runtime is suspending

Profiling

Page 31

6.10.2 RuntimeSuspendFinished
The CLR calls RuuntimeSuspendFinished to notify the code profiler that the Runtime
has suspended all threads needed for a Runtime suspension. Note that not all
Runtime threads are required to be suspended, as described in the comment for
RuntimeSuspendStarted.

Note: It is guaranteed that this event will occur on the same threadId as
RuntimeSuspendStarted occurred on.

HRESULT RuntimeSuspendFinished()

6.10.3 RuntimeSuspendAborted
The CLR calls RuntimeSuspendAborted to notify the code profiler that the Runtime is
aborting the Runtime suspension that was occurring. This may occur if two threads
simultaneously attempt to suspend the Runtime.

Note: It is guaranteed that this event will occur on the same threadId as the
RuntimeSuspendStarted occurred on, and that only one of RuntimeSuspendFinished
and RuntimeSuspendAborted may occur on a single thread following a
RuntimeSuspendStarted event.

HRESULT RuntimeSuspendAborted()

6.10.4 RuntimeResumeStarted
The CLR calls RuntimeResumeStarted to notify the code profiler that the Runtime is
about to resume all of the Runtime threads.

Note: If a thread successfully suspended the runtime, then it is *NOT* guaranteed
that the call to RuntimeResumeStarted will be called on the same threadId. In this
case, it is also not guaranteed that the thread calling RuntimeResumeStarted will
have a non-zero threadId. However, if a thread unsuccessfully suspends the runtime
(i.e., there was a conflict with another suspension), then it is guaranteed that the
calls to RuntimeSuspspendStarted, RuntimeSuspendAborted and
RuntimeResumeStarted will be called from the same threadId.

HRESULT RuntimeResumeStarted()

6.10.5 RuntimeResumeFinished
The CLR calls RuntimeResumeFinished to notify the code profiler that the Runtime
has finished resuming all its threads and is now back in normal operation.

Note: It is not guaranteed that this event will occur on the same threadId as the
RuntimeSuspendStarted occurred on, but is guaranteed to occur on the same
threadId as the RuntimeResumeStarted occurred on.

HRESULT RuntimeResumeFinished()

Profiling

Page 32

6.10.6 RuntimeThreadSuspended
The CLR calls ThreadSuspended to notify the code profiler that a particular thread
has been suspended. All threads within managed code must be suspended. If a
thread is in unmanaged code, it will be allowed to continue, but will suspend upon
re-entering the Runtime and will fire this event. Thus, this notification could occur
after a suspension has completed, but before the Runtime resumes.

HRESULT RuntimeThreadSuspended(ThreadID threadId)

Parameter Description

[in] threaded The ID of the thread that was suspended.

6.10.7 ThreadResumed
The CLR calls ThreadResumed to notify the code profiler that a particular thread has
been resumed after being suspended due to a Runtime suspension.

HRESULT RuntimeThreadResumed(ThreadID threadId)

Parameter Description

[in] threaded The ID of the thread that was resumed.

Remarks

It is possible for the profiler to receive one or more RuntimeSuspendiStarted
callbacks originating from different threads. Only one suspension request will
succeed and eventually cause the suspension. All the other suspension events will be
aborted. Every thread that gets suspended will fire a ThreadSuspended callback and
when it gets resumed it will fire a ThreadResumed callback. Note, however, that the
ThreadSuspended/Resumed events are not guaranteed to be called by the threads
that are actually being suspended. If a thread during a suspension attempt is
running native code, then we will not receive any events for that thread. Also if we
have two subsequent suspensions, it is possible for certain threads not to be
resumed simply because they did not have enough time to do so between the
consecutive suspensions.

6.11 Garbage Collection
When the user specifies the COR_PRF_MONITOR_GC flag, all the GC events will be
triggered in the profiler except the ICorProfilerCallback::ObjectAllocated events.
They are explicitly controlled by another flag (see next section), for performance
reasons. Note that when the COR_PRF_MONITOR_GC is enabled, the Concurrent
Garbage Collection is turned off.

The code profiler identifies that a GC is taking place by monitoring the
suspend/resume related callbacks when the suspension reason is
COR_PRF_SUSPEND_FOR_GC. During shutdown though, the runtime also gets
suspended and it is possible for one or more GC’s to take place but the code profiler
will not receive any notifications for them, since the runtime is already in a
suspended state. Therefore, the code profiler is possible to continue receiving object

Profiling

Page 33

allocations between the GC events from the runtime while everything seesm to be
stopped!. Detecting when a GC has completed in those circumstances is not trivial.
The code profiler has to detect the very first ObjectAllocated callback that took place
AFTER an ObjectReferences or RootReferences callbacks.

6.11.1 ObjectAllocated
Notify that memory in the GC heap has just been allocated for an object. This
notification does not fire for allocations from the stack, nor from unmanaged
memory.

Allocating objects in the heap is likely to be a very frequent operation in an
Application. Therefore, this particular notification would fire very often, stealing CPU
cycles from the running Application. For these events to fire, the profiler must set
the COR_PRF_MONITOR_OBJECT_ALLOCATED bit in the notifications mask.

It is possible to receive a classId that corresponds to a regular class but it has not
been loaded yet. The profiler will receive a class load callback for that class
immediately after the object creation callback.

HRESULT ObjectAllocated(ObjectID objectID, ClassID classId)

Parameter Description

[in] objected ID of the newly-allocated object

[in] classId ID for the class of which this object is an instance

6.11.2 ObjectsAllocatedByClass
ObjectsAllocatedByClass counts of all the objects allocated for each class since the
previous garbage collection. Called whilst all threads in the target process are still
halted.

This notification provides summary information suitable for building a chart of object
creation rates, by class. The callback provides a much cheaper way of obtaining that
info than counting each allocation (with the ObjectAllocated notification). The arrays
omit any classes which have created no objects since the last GC (rather than supply
a value of zero in the cObjects[] array). This callback provides information about
Generation 0 allocated classes. Notice that this callback is not reporting objects that
are allocated in the large heap.

HRESULT ObjectsAllocatedByClass(ULONG cClassCount,

 ClassID classIds[],

 LONG cObjects[])

Parameter Description

[in] cClassCount Number of entries in the parallel arrays classIds[] and
cObjects[]

[in] classIds[] array of IDs for the classes of object allocated

[in] cObjects[] count of object allocated for each class in classIds[]

Profiling

Page 34

Example: suppose that since the previous garbage collection, Runtime has allocated
at total of 35 objects, spread across 4 different classes. Then the notification would
have cClassCount = 4, and the parallel arrays classIds[0..3] and cObjects[0..3]
might contain the values shown in the table below:

 classIds[] cObjects[]

0 0x5231 8840 4
1 0x4800 2150 23
2 0x4799 3147 1
3 0x6123 4196 7

6.11.3 MovedReferences
Garbage collection reclaims the memory occupied by ‘dead’ objects and compacts
that freed space. As a result, live objects are moved within the heap. The effect is
that ObjectIDs handed out by previous notifications change their value (the internal
state of the object itself does not change (other than it’s references to other
objects), just its location in memory, and therefore its ObjectID). The
MovedReferences notification lets a profiler update its internal tables that are
tracking info by ObjectID.

The number of objects in the heap can number thousands or millions. With such
large numbers, it’s impractical to notify their movement by providing a before-and-
after ID for each object. However, the garbage collector tends to move contiguous
runs of live objects as a ‘bunch’ – so they end up at new locations in the heap, but
they still contiguous. This notification reports the “before” and “after” ObjectID of
these contiguous runs of objects. (see example below)

In other words, if an ObjectID value lies within the range

oldObjectIDRangeStart[i] <= ObjectID < oldObjectIDRangeStart[i] +
cObjectIDRangeLength[i]

for 0 <= i < cMovedObjectIDRanges, then the ObjectID value has changed to

ObjectID - oldObjectIDRangeStart[i] + newObjectIDRangeStart[i]

All of these callbacks are made while the Runtime is suspended, so none of the
ObjectID values can change until the Runtime resumes and another GC occurs.

MovedReferences may be invoked multiple times during a GC if the list of moved
references exceeds the size of the profiling services’ internal buffer.

HRESULT MovedReferences(ULONG cMovedObjectRefs,

 ObjectID oldObjectRefs[],

 ObjectID newObjectRefs[],

 ULONG cObjectRefSize)

Parameter Description

[in] cMovedObjectIDRanges a count of the number of ObjectID ranges that
were moved.

[in] oldObjectIDRangeStart an array of elements, each of which is the start
value of a range of ObjectID values before being
moved.

Profiling

Page 35

[in] newObjectIDRangeStart an array of elements, each of which is the start
value of a range of ObjectID values after being
moved.

[in] cObjectIDRangeLength is an array of elements, each of which states the
size of the moved ObjectID value range.

Example: The diagram below shows 10 objects, before garbage collection. They lie
at start addresses (equivalent to ObjectIDs) of 08, 09, 10, 12, 13, 15, 16, 17, 18
and 19. ObjectIDs 09, 13 and 19 are dead (shown shaded); their space will be
reclaimed during garbage collection.

The “After” picture shows how the space occupied by dead objects has been
reclaimed to hold live objects. The live objects have been moved in the heap to the
new locations shown. As a result, their ObjectIDs all change. The simplistic way to
describe these changes is with a table of before-and-after ObjectIDs, like this:

 oldObjectIDRangeStart[] newObjectIDRangeStart[]

0 08 07
1 09
2 10 08
3 12 10
3 13
4 15 11
5 16 12
6 17 13
7 18 14
8 19

This works, but clearly, we can compact the information by specifying starts and
sizes of contiguous runs, like this:

 oldObjectIDRangeStart[] newObjectIDRangeStart[] cObjectIDRangeLength[]

0 08 07 1
1 10 08 2
2 15 11 4

This corresponds to exactly how MovedReferences reports the information. Note that
MovedReferencesCallback is reporting the new layout of the object BEFORE they
actually get relocated in the heap. So the old ObjectIDs are still valid for calls to the
ICorProfilerInfo interface (and the new ObjectIDs are not).

08 Before 09 10 12 15 16 17 18 19

07After 08 10 11 12 13 14

13

Profiling

Page 36

6.11.4 ObjectReferences
The CLR calls ObjectReferences to provide information about objects in memory
referenced by a given object. This function is called for each object remaining in the
GC heap after a collection has completed. If the profiler returns an error HRESULT
from this callback, the profiling services will discontinue invoking this callback until
the next GC. This callback can be used in conjunction with the RootReferences
callback to create a complete object reference graph for the Runtime.

HRESULT ObjectReferences(ObjectID objectId,

 ClassID classId,

 ULONG cObjectRefs,

 ObjectID objectRefIds[])

Parameter Description

[in] objectId ID of the object being reported

[in] classId ID of the class of which the object is an instance

[in] cObjectRefs number of entries in objectIds[]

[in] objectRefIds array of ObjectIDs contained within objectId

[return value] If the code profiler returns E_FAIL, the Runtime will halt
enumerating the heap. However, the garbage collector
continues to traverse the heap.

If the code profiler returns S_OK, the heap dump will
proceed normally.

Remarks

The CLR will ensure that each object reference is reported only once by
ObjectReferences.

6.11.5 RootReferences
The CLR calls RootReferences with information about root references after a garbage
collection has occurred. Static object references and references to objects on a stack
are co-mingled in the arrays. This callback may occur multiple times for a particular
GC if the profiling services’ internal buffer fills up and there are remaining root
references.

HRESULT RootReferences(ULONG cRoots, ObjectID objectIds[])

Parameter Description

[in] cRoots number of roots listed

[in] objectIds array of ObjectIDs

Remarks

Profiling

Page 37

The application is halted following a COR_PRF_EVENT_GC_FINISHED event until the
Runtime is done passing information about the heap to the code profiler. The method
ICorProfilerInfo::GetClassFromObject can be used to obtain the ClassID of the class
of which the object is an instance. The method ICorProfilerInfo::GetTokenFromClass
can be used to obtain metadata information about the class.

It is possible to get NULL ObjectIDs in the RootReferences callback. For example, all
object references declared on the stack (such as “Object A = NULL;”) are treated as
roots by the GC, and will always be reported.

When a GC operation completes, normally we should expect for every surviving
object to be either a root reference or have a parent that is a root reference. At
times it is possible to have some objects that do not belong to any of the
aforementioned categories. Those objects are either allocated internally by the
runtime or are weak references to delegates. Unfortunately, the profiling API
currently does not let the user identify those objects and this will be addressed in a
future version.

6.12 Exceptions
Notifications of exceptions are the most difficult of all notifications to describe and to
understand. This is because of the inherent complexity in exception processing. The
set of exception notifications described below was designed to provide all the
information required for a sophisticated profiler – so that, at every instant, it can
keep track of which pass (first or second), which frame, which filter and which finally
block is being executed, for every thread in the profilee process. Note that the
Exception notifications are not providing any threadID’s but the user can always call
ICorProfilerInfo::GetCurrentThreadID to discover which managed thread throws the
exception.

Remarks:

In Interop scenarios, the profiler will get an ExceptionThrown callback every time
exception unwinding crosses the unmanaged–to-managed boundary. The profiler will
get a full search and unwind cycle for every managed chain and the subsequent
ExcptionThrown callbacks will have the same objectId. In this way, the profiler can
identify that this is not a new exception but the old one that is getting propagated to
a new managed chain.

Figure 2 displays how the code profiler receives the various callbacks, when
monitoring exception and CLR exception events. The arrow indicates the initial state
of the program (no exception), and the states that are marked with lavender color
indicate the states that the profiler may end up after receiving all the events that are
related to specific exception. If the final state is NORMAL then we either found a
managed catcher for the exception (transition from HANDLED state via
ExceptionCatcherEnter callback) or the CLR handled the exception internally
(transition from UNWIND PHASE state via ExceptionCLRCatcherFound). If the final
state is UNWIND PHASE, then the exception is unhandled. Note that if an exception
is thrown in a managed layer, crosses to the unamanged world and enters back into
the “managed world”, the profiler will receive and ExceptionThrown every time the
exception handling mechanism enters the managed world but the exception object
will be the same. To illustrate this assume that you have the scenario shown in
Figure 1:

Profiling

Page 38

Exception is thrown

A few managed frames that do not catch the exception

Unmanaged layer

More managed frames that do not catch the exception

Figure 1 – Exception handling through interop layers

In that case the sequence of callbacks that will be received looks as follows:

ExceptionThrown with Object: 0x00bb60e4 // exception is originally thrown
ExceptionSearchFunctionEnter for Function: 0x03a019d0 // search phase starts here
ExceptionSearchFunctionLeave
ExceptionSearchFunctionEnter for Function: 0x03a019a8
ExceptionSearchFunctionLeave
ExceptionSearchFunctionEnter for Function: 0x03a01980
ExceptionSearchFunctionLeave
ExceptionCLRCatcherFound // exception enters the unmanaged world and get handled
by CLR
ExceptionUnwindFunctionEnter for Function: 0x03a019d0 // unwind phase starts
ExceptionUnwindFunctionLeave
ExceptionUnwindFunctionEnter for Function: 0x03a019a8
ExceptionUnwindFunctionLeave
ExceptionUnwindFunctionEnter for Function: 0x03a01980
ExceptionUnwindFunctionLeave
ExceptionCLRCatcherExecute // internal catcher is executed
ExceptionThrown with Object: 0x00bb60e4 // exception moves into the managed world
with the same ID
ExceptionSearchFunctionEnter for Function: 0x003750d8
ExceptionSearchCatcherFound for Function: 0x003750d8
ExceptionSearchFunctionLeave
ExceptionUnwindFunctionEnter for Function: 0x003750d8
ExceptionCatcherEnter for Exception Object 0x00bb60e4 in Function 0x003750d8
ExceptionCatcherLeave

Note that if the code profiler is not interpreting properly the ExceptionThrown
callbacks in the above scenario it may falsely identify 2 exception but in fact it is the
same exception traveling through managed and unmanaged layers. Also note that if
a GC occurs an exception object may move and the code profiler has to be able to
track all the exception objects that potentially moved in memory.

Profiling

Page 39

Figure 2 – Exception callback sequence

6.12.1 ExceptionThrown
The CLR calls ExceptionThrown to notify the code profiler that an exception has been
thrown. This function is only called if the Runtime exception handler is called to
process an exception.

HRESULT ExceptionThrown(ObjectID thrownObjectId)

Profiling

Page 40

Parameter Description

[in] thrownObjectId The ID of the Exception object thrown.

6.12.2 ExceptionSearchFunctionEnter
The CLR calls ExceptionSearchFunctionEnter to notify the profiler that the search
phase of exception handling has entered a function.

HRESULT ExceptionSearchFunctionEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function that we’re searching for a handler in.

6.12.3 ExceptionSearchFunctionLeave
The CLR calls ExceptionSearchFunctionLeave to notify the profiler that the search
phase of exception handling has left a function.

HRESULT ExceptionSearchFunctionLeave()

6.12.4 ExceptionSearchFilterEnter
The CLR will call ExceptionSearchFilterEnter just before executing a user filter. The
functionID is that of the function containing the filter.

HRESULT ExceptionSearchFilterEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function containing the filter that we are entering.

6.12.5 ExceptionSearchFilterLeave
The CLR will call ExceptionSearchFilterLeave immediately after executing a user
filter.

HRESULT ExceptionSearchFilterLeave()

6.12.6 ExceptionSearchCatcherFound
The CLR will call ExceptionSearchCatcherFound when the search phase of exception
handling has located a handler for the exception that was thrown.

HRESULT ExceptionSearchCatcherFound(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function that will handle the exception.

Profiling

Page 41

6.12.7 ExceptionOSHandlerEnter
Note: This callback is currently inactive.

HRESULT ExceptionOSHandlerEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the first function encountered on the search or unwind.

6.12.8 ExceptionOSHandlerLeave
Note: This callback is currently inactive.

HRESULT ExceptionOSHandlerLeave(FunctionID functionId)

Parameter Description

[in] functionId The ID of the last function encountered on the search or unwind.

6.12.9 ExceptionUnwindFunctionEnter
The CLR calls ExceptionUnwindFunctionEnter to notify the profiler that the unwind
phase of exception handling has entered a function.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFunctionEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function that is being unwound from the stack.

6.12.10 ExceptionUnwindFunctionLeave
The CLR calls ExceptionUnwindFunctionLeave to notify the profiler that the unwind
phase of exception handling has left a function. The function instance and its stack
data have now been removed from the stack.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFunctionLeave()

6.12.11 ExceptionUnwindFinallyEnter
The CLR calls ExceptionUnwindFinallyEnter to notify the profiler that the unwind
phase of exception is entering a finally clause contained in the specified function.

Profiling

Page 42

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFinallyEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function whose finally clause is being executed.

6.12.12 ExceptionUnwindFinallyLeave
The CLR calls ExceptionUnwindFinallyLeave to notify the profiler that the unwind
phase of exception is leaving a finally clause.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFinallyLeave()

6.12.13 ExceptionCatcherEnter
The CLR calls this function just before passing control to the appropriate catch block.
Note that this is called only if the catch point is in JIT compiled code. An exception
that is caught in unmanaged code, or in the internal code of the Runtime will not
generate this notification. The objectId is passed again since a GC could have
moved the object since the ExceptionThrown notification.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionCatcherEnter(FunctionID functionId,

 ObjectID objectId)

Parameter Description

[in] functionId The ID of the function containing the catch clause.

[in] objectId The ID of the thrown Exception object.

6.12.14 ExceptionCatcherLeave
The CLR calls ExceptionCatcherLeave when the Runtime leaves the catcher's code.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

Profiling

Page 43

HRESULT ExceptionCatcherLeave()

6.12.15 ExceptionCLRCatcherFound
When the CLR itself is catching an exception, the following two callbacks are invoked
to notify the profiler. Note that between the ExceptionCLRCatcherFound/Execute the
CLR may also unwind managed frames. In that case ExceptionUnwind callbacks will
be received in-between. For backward compatibility, the profiler must set the
COR_PRF_MONITOR_CLR_EXCEPTIONS event flag to receive those events.

The CLR calls ExceptionCLRCatcherFound when the Runtime leaves the catcher's
code.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionCLRCatcherFound()

6.12.16 ExceptionCLRCatcherExecute
The CLR calls ExceptionCatcherExecute when the Runtime leaves the catcher's code.

Note: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the Runtime will block until this callback returns. Also, the profiler
may not call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionCLRCatcherExecute()

Profiling

Page 44

7 ICorProfilerInfo
The CLR provides the ICorProfilerInfo interface. It allows a profiler to ask for info
about classes, function, code, stack frames, etc within the running process. It
includes a small number of methods that allow the profiler to change this info; for
example, to provide new MSIL for a function and request that be re-JIT compiled.
ICorProfilerInfo interface as the “help desk” for profilers.

The CLR provides the ICorProfiler interface to each profiler on its very first call –
ICorProfilerCallback::Initialize

The CLR uses the free threaded model to implement the ICorProfilerInfo interface.
Events are dispatched from within the Runtime or on a thread that is making the
code profiler method call. Interface methods implemented by the Runtime can be
called from any thread (that has been CoInitialize’d) at any time.

The methods in ICorProfilerInfo return S_OK on success, or one of the error codes
defined in CorError.h (CORPROF_E_*) on failure.

7.1 BeginInprocDebugging
The profiler MUST call this function before using the in-process debugging APIs. The
parameter fThisThreadOnly indicates whether in-proc debugging will be used to trace
the stack of the current managed thread only, or whether it might be used to trace
the stack of any managed thread. The pdwProfilerContext argument is information
that the profiler must save so that it may use it during EndInprocDebugging. The
profiler must pass the value returned by this API to EndInprocDebugging in an
unaltered state.

HRESULT BeginInprocDebugging(BOOL fThisThreadOnly,

 DWORD *pdwProfilerContext)

Parameter Description

[in] fThisThreadOnly flag that indicates whether we wish to enable in-proc
debugging for the current thread or for all the
threads.

[out] pdwProfilerContext Parameter where the context is saved; this context
needs to be used later in EndInprocDebugging call

In-process debugging is not supported from all the callbacks and a call to
BeginInprocDebugging will fail with CORPROF_E_INPROC_NOT_AVAILABLE if invoked
from the wrong callback. For more details please review the in-process debugging
section of the Debugging API specification. If we call multiple times
BeginInprocDebugging the method will return
CORPROF_E_INPROC_ALREADY_BEGUN.

Profiling

Page 45

7.2 EndInprocDebugging
The profiler MUST call this function when it is done using the in-process debugging
APIs. Failing to do so will result in undefined behavior of the runtime. The
dwProfilerContext is the value returned by BeginInprocDebugging.

HRESULT EndInprocDebugging(DWORD *pdwProfilerContext)

Parameter Description

[in] pdwProfilerContext Parameter where the context was saved during the
BeginInprocDebugging function call

7.3 ForceGC
The code profiler calls ForceGC to force a garbage collection to occur in the Runtime.

HRESULT ForceGC()

This method needs to be called from a thread that does not have any profiler
callbacks on its stack. The most efficient way to implement it is to create a listener
thread dedicated for GC operations and when a managed thread wishes to force a GC
it simply creates an event and continues its execution. Never use
ICorProfilerInfo::ForceGC before ICorProfilerCallback::Initialize() callback and/or
after the ICorProfilerCallback::Shutdown callback are received. This can cause
unspecified behavior of the runtime.

7.4 GetAppDomainInfo
The code profiler calls GetAppDomainInfo to obtain information about a given
application domain.

HRESULT GetAppDomainInfo(AppDomainID appDomainId,

 SIZE_T cchName,

 SIZE_T *pcchName,

 WCHAR szName[],

 ProcessID *pProcessId)

Parameter Description

[in] appDomainId AppDomainID of the given application domain.

[in] cchName The allocated size of string buffer for the application domain
name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the application domain name.

[out] pProcessId The Win32 processId where the appdomain belongs to

Profiling

Page 46

7.5 GetAssemblyInfo
The code profiler calls GetAssemblyInfo to obtain information about a given
assembly.

HRESULT GetAssemblyInfo(AssemblyID assemblyId,

 SIZE_T cchName,

 SIZE_T *pcchName,

 WCHAR szName[],

 AppDomainID *pAppDomainId,

 ModuleID *pModuleId)

Parameter Description

[in] assemblyId AssemblyID of the given assembly.

[in] cchName The allocated size of string buffer for the assembly name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the assembly name.

[out] pAppDomainId Pointer to the AppDomainID of the application domain that
contains the assembly.

[out] pModuleId Pointer to the ModuleID of the module that contains the
assembly’s manifest.

7.6 GetClassFromObject
The code profiler calls GetClassFromObject to obtain the classId of an object given its
objectId.

HRESULT GetClassFromObject(ObjectID objectId,

 ClassID *pClassId)

Parameter Description

[in] objectId The ObjectID of the object the code profiler is interested in.

[out] pClassId Pointer to the ClassID of the class of the object.

7.7 GetClassFromToken
The code profiler calls GetClassFromToken to obtain the classId of a class given its
metadata.

HRESULT GetClassFromToken(ModuleID moduleId,

 mdTypeDef typeDef,

Profiling

Page 47

 ClassID *pClassId)

Parameter Description

[in] moduleId The ModuleID of the module the class is defined in.

[in] typeDef The metadata typedef token for the class.

[out] pClassId Pointer to the ClassID of the class the code profiler is interested
in.

7.8 GetClassIDInfo
Returns the parent module that a class is defined in, along with the metadata token
for the class. One can call GetModuleInfo to get the metadata interface for the
moduleId returned. The token can then be used to access the metadata for this
class.

HRESULT GetClassIDInfo(ClassID classId,

 ModuleID *pModuleId,

 mdTypeDef *pTypeDefToken)

Parameter Description

[in] classId The ClassID of the class the code profiler is interested in.

[out] pModuleId Pointer to the ModuleID of the module in which the class is
defined.

[out] pTypeDefToken Pointer to the metadata typedef token for the class.

Remarks

It is possible to receive different classId values for the same class. This can occur
only for __COMObject classes, the reason being that Interop requires a different EE
class for each Application Domain so the user can potentially create a different v-
table for each one of them. The profiler currently does not provide a method to get
the current Application Domain.

7.9 GetCodeInfo
The code profiler calls GetCodeInfo to obtain information about a JIT-compiled
function. An error will be returned if GetCodeInfo is called with a functionId for a
function that has not been JIT-compiled.

HRESULT GetCodeInfo(FunctionID functionId,

 LPCBYTE *pStart,

 ULONG *pcSize)

Profiling

Page 48

Parameter Description

[in] functionId The FunctionID of the function the code profiler is interested in.

[out] pStart The starting address of the JIT-compiled code.

[out] pcSize The size of the JIT-compiled code in bytes.

Remarks

This method must be called after the code profiler has received notification that the
function has been JIT-compiled.

7.10 GetCurrentThreadID
The code profiler calls GetCurrentThreadID to get the managed thread ID for the
current thread.

HRESULT GetCurrentThreadID(ThreadID *pThreadId)

Parameter Description

[out] pThreadId Pointer to the ThreadID to set.

GetCurrentThreadID may return CORPROF_E_NOT_MANAGED_THREAD if the current
thread is an internal EE thread, and the returned value of pThreadId will be NULL.
This scenario can arise if for example someone is using
ICorProfilerInfo::GetCurrentThreadID from any of the Suspend/Resume related
callbacks in conjunction with ConcurrentGC.

7.11 GetEventMask
The code profiler calls GetEventMask to obtain the current event categories for which
it is to receive event notification from the Runtime.

HRESULT GetEventMask(DWORD *pdwEvents)

Parameter Description

[out] pdwEvents Pointer to the bit mask of flags from COR_PRF_MONITOR
indicating the events for which the code profiler is to receive
notification.

Remarks

Code profilers can receive notification for any combination of the event categories
defined in the COR_PRF_MONITOR enumerator.

Profiling

Page 49

7.12 GetFunctionFromIP
The code profiler calls GetFunctionFromIP to map an instruction pointer in managed
code to a functionId.

HRESULT GetFunctionFromIP(LPCBYTE ip, FunctionID *pFunctionId)

Parameter Description

[in] ip The instruction pointer that the code profiler is interested in

[out] pFunctionId Pointer to the FunctionID of the function that corresponds to
the instruction pointer.

Remarks

The code profiler can call GetCodeInfo to obtain information about the size and
starting address of the function. GetFunctionFromIP returns E_FAIL if it is unable to
map the instruction pointer. The CLR may choose to unload a function to recover
memory. In such instances, the instruction pointer mapping becomes invalid. The
CLR generates a COR_PRF_EVENT_FUNCTION_UNLOAD_STARTED event. In
response to this event, the code profiler should call GetILOffsetFromIP to map saved
instruction pointers that fall within the function to MSIL offsets from the beginning of
the function.

The method returns E_FAIL if the function is not managed code.

7.13 GetFunctionFromToken
The code profiler calls GetFunctionFromToken to obtain the functionId of a function
given its metadata.

HRESULT GetFunctionFromToken(ModuleID moduleId,

 mdToken token,

 FunctionID *pFunctionId)

Parameter Description

[in] moduleId The ModuleID of the module the function is defined in.

[in] token The metadata token for the function.

[out] pFunctionId Pointer to the FunctionID of the function the code profiler is
interested in.

7.14 GetFunctionInfo
The code profiler calls GetFunctionInfo to obtain metadata information about a
method in a class or a function at a module level given the function’s functionId.

Profiling

Page 50

HRESULT GetFunctionInfo(FunctionID functionId,

 ClassID *pClassId,

 ModuleID *pModuleId,

 mdToken *pToken)

Parameter Description

[in] functionId The FunctionID of the function the code profiler is interested in.

[out] pClassId Pointer to the ClassID of the class in which the function is
defined.

[out] pModuleId Pointer to the ModuleID of the module in which the function is
defined.

[out] pToken Pointer to the metadata token for the function.

7.15 GetHandleFromThread
The code profiler calls GetHandleFromThread to map a threadId to a Win32 thread
handle.

HRESULT GetHandleFromThread(ThreadID threadId, HANDLE *phThread)

Parameter Description

[in] threadId The ThreadID of the thread the code profiler is interested in.

[out] phThread Pointer to the Win32 thread handle.

7.16 GetILFunctionBodyAllocator
MSIL method bodies must be located as RVA’s to the loaded module, which means
that they come after the module within 4 GB. In order to make it easier for a tool to
swap out the body of a method, this allocator will ensure memory allocated after that
point. This method has to be called on a per module basis otherwise the code profiler
can potentially create fragmentation of the available memory in the heap.

HRESULT GetILFunctionBodyAllocator(ModuleID moduleId,

 IMethodAlloc **ppMalloc)

Parameter Description

[in] moduleId ModuleID of the given module.

[in] ppMalloc Pointer to pointer to memory allocator for method.

Profiling

Page 51

7.17 GetILFunctionBody
The code profiler calls GetILFunctionBody to obtain a pointer to the body of a method
starting at its header. A method is scoped by the module it lives in. Because this
function is designed to give a tool access to MSIL before it has been loaded by the
Runtime, it uses the metadata token of the method to find the instance desired. Note
that this function has no effect on already compiled code.

HRESULT GetILFunctionBody(ModuleID moduleId,

 mdMethodDef method,

 LPCBYTE **ppMethodHeader,

 ULONG64 *pcbMethodSize)

Parameter Description

[in] moduleId ModuleID of the given module.

[in] method Metadata token for method.

[out] ppMethodHeader Pointer to the method header (IMAGE_COR_ILMETHOD)

[out] pcbMethodSize Pointer to the size of the method.

7.18 GetILToNativeMapping
The profiler calls GetILToNativeMapping when it wants to get a map from MSIL
offsets to native offsets for this code. An array of COR_PROF_IL_TO_NATIVE_MAP
structures will be returned, and some of the ilOffsets in this array may be the values
specified in CorProfIlToNativeMappingTypes. The rest of the values will be the actual
MSIL offsets for that method. Note that if the JIT is not tracking debug information,
the MSIL offsets will not be exact.

HRESULT GetILToNativeMapping(FunctionID functionId,

 ULONG32 cMap,

 ULONG32 *pcMap,

 COR_DEBUG_IL_TO_NATIVE_MAP map[])

Parameter Description

[in] functionId FoduleID of the given function.

[in] cMap Indicates the max number of offsets we wish to read

[out] *pcMap Indicates how many items were actually written to the map[]

[out] map An array where the ILToNative structs will be placed

Profiling

Page 52

7.19 GetInprocInspectionInterface
The code profiler calls GetInprocInspectionInterface to get an interface to the in-
process portion of the debug interface, which is useful for things like doing a stack
trace. It is expected that the returned interface will be queried for ICorDebug. In
order to use this callback, the profiler needs to call BeginInprocDebugging first
requesting in-process support for all threads.

HRESULT GetInprocInspectionInterface(IUnknown **ppicd)

Parameter Description

[out] ppicd *ppicd will be filled in with a pointer to the interface, or NULL if
the interface is unavailable.

7.20 GetInprocInspectionThisThread
The code profiler calls GetInprocInspectionIThisThread to get an interface to the in-
process portion of the debug interface that is specific to the current thread. It's
expected that the returned interface will be queried for ICorDebugThread, which can
then be used to immediately do a stack trace. In order to use this callback, the
profiler needs to call BeginInprocDebugging first requesting in-process support for all
threads or for the current thread only.

HRESULT GetInprocInspectionIThisThread(IUnknown **ppicd)

Parameter Description

[out] ppicd *ppicd will be filled in with a pointer to the interface, or NULL if
the interface is unavailable.

7.21 GetModuleInfo
The code profiler calls GetModuleInfo to obtain information about a given module.

HRESULT GetModuleInfo(ModuleID moduleId,

 LPCBYTE **ppBaseLoadAddress,

 SIZE_T cchName,

 SIZE_T *pcchName,

 WCHAR szName[],

 mdModule *pModuleToken,

 AssemblyID *pAssemblyId)

Parameter Description

[in] moduleId ModuleID of the given module.

Profiling

Page 53

[out] ppBaseLoadAddress Pointer to the base address of the module.

[in] cchName The allocated size of string buffer for module name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the module name.

[out] pModuleToken Pointer to metadata token for the module.

[out] pAssemblyId Pointer to the assembly ID of the assembly that
contains the module. If GetModuleInfo is called before
the module is attached to the its parent assembly, the
returned value for pAssemblyId will be the constant
PROFILER_PARENT_UNKNOWN.

7.22 GetModuleMetaData
The code profiler calls GetModuleMetaData to obtain a metadata interface instance,
which maps to the given module. One may ask for the metadata to be opened in
reada and write mode, but this will result in slower metadata execution of the
program, because changes made to the metadata cannot be optimized as they were
from the compiler.

HRESULT GetModuleMetaData(ModuleID moduleId,

 DWORD dwOpenFlags,

 REFIID riid,

 IUnknown **ppOut)

Parameter Description

[in] moduleId ModuleID of the given module.

[in] dwOpenFlags Mode flags for opening metadata.

[in] riid The REFIID of the metadata interface.

[out] ppOut Pointer to the pointer to the returned metadata interface that
maps to the given module.

7.23 GetObjectSize
The code profiler calls GetObjectSize to obtain the instance size of an object.

HRESULT GetObjectSize(ObjectID objectId,

 ULONG32 *pcSize)

Parameter Description

[in] objectId The ObjectID of the object the code profiler is interested in.

[out] pcSize Pointer to the size of the object in memory in bytes.

Profiling

Page 54

7.24 GetThreadContext
The code profiler calls GetThreadContext to get the contextId currently associated
with the calling Runtime thread. This method set pContextId to NULL if the calling
thread is not a Runtime thread.

HRESULT GetThreadContext(ThreadID threadId,

 ContextID *pContextId)

Parameter Description

[in] threadId The ThreadID of the thread the code profiler is interested in.

[out] pContextId Pointer to the context structure we are interested in retrieving

7.25 GetThreadInfo
The code profiler calls GetThreadInfo to obtain the Win32 thread ID for the specified
thread.

HRESULT GetThreadInfo(ThreadID threadId,

 DWORD *pdwWin32ThreadId)

Parameter Description

[in] threaded The ThreadID of the thread the code profiler is
interested in.

[out] pdwWin32ThreadId Pointer to the Win32 thread ID.

7.26 GetTokenAndMetadataFromFunction
The code profiler calls this method for a given function, in order to retrieve the token
value and an instance of the metadata interface, which can be used against this
token.

HRESULT GetTokenAndMetaDataFromFunction(FunctionID functionId,

 REFIID riid,

 IUnknown **ppImport,

 mdToken *pToken)

Parameter Description

[in] functionId The functionID of the method we are interested in.

[in] riid The REFIID of the metadata interface.

[out] ppImport Pointer to the pointer to the returned metadata interface that
maps to the given module.

[out] pToken Pointer to the metadata token for the specific function

Profiling

Page 55

7.27 IsArrayClass
This method allows the profiler to get information about classes that are arrays and
get reported to the profiler either from ObjectAllocated or from
ObjectAllocatedByClass callbacks. In the above callbacks, the profiler is possible to
receive classId’s, which were never encountered before. Those classes correspond to
arrays for which we have allocated space on the heap and they can get garbage
collected like any other object. If the classId does not correspond to an array the
method returns S_FALSE.

HRESULT IsArrayClass(ClassID classId,

 CorElementType *pBaseElemType,

 ClassID *pBaseClassId,

 ULONG *pcRank)

Parameter Description

[in] classId The ClassID of the class we are interested in.

[out] pBaseElemType The type of the element of the array.

[out] pBaseClassID In which class the array belongs to.

[out] pcRank The rank of the array

7.28 SetEnterLeaveFunctionHooks
The code profiler calls SetFunctionHooks to specify its own callback replacements for
ICorProfilerCallback::FunctionEntry, ICorProfilerCallback::FunctionExit and
ICorProfilerCallback::FunctionTailcall.

HRESULT SetEnterLeaveFunctionHooks(FunctionEnter *pFuncEnter,

 FunctionLeave *pFuncLeave,

 FunctionTailcall *pFuncTailcall)

Parameter Description

[in] pFuncEnter Pointer to code profiler supplied function to be used as
callback on entry to functions.

[in] pFuncLeave Pointer to code profiler supplied function to be used as
callback on exit from functions.

[in] pFuncTailcall Pointer to code profiler supplied function to be used as
callback on tailcall exit from functions.

Profiling

Page 56

7.29 SetEventMask
The code profiler calls SetEventMask to sets the event categories (see
COR_PRF_MONITOR) for which it is set to receive notification from the Runtime.

All events but those contained in COR_PRF_MONITOR_IMMUTABLE may be set at
any time.

HRESULT SetEventMask(DWORD dwEvents)

Parameter Description

[in] dwEvents A bit mask of flags from COR_PRF_MONITOR indicating which
events the code profiler wants to receive notification for.

7.30 SetFunctionIDMapper
The code profiler calls SetFunctionIDMapper to specify the function to be called to
map functionId’s to alternative value to be passed to the function entry and function
exit hooks. See the description of ICorProfilerInfo::SetEnterLeaveFunctionHooks.

HRESULT SetFunctionIDMapper(FunctionIDMapper *pFunction)

Parameter Description

[in] pFunction Pointer to the function to be called to map a FunctionID to an
alternative value to be passed to the function entry and function
exit hooks.

7.31 SetFunctionReJIT
The code profiler calls SetFunctionReJIT to mark a function as requiring JIT
recompilation. The function will be JIT recompiled at its next invocation. The normal
profiler events will give the profiler an opportunity to replace the MSIL prior to the
JIT. By this means, a tool can effectively replace a function at Runtime. Note that all
the active instances of the function are not affected by the replacement and that this
methods fails when used with methods that are pre-compiled.

HRESULT SetFunctionReJIT(FunctionID functionId)

Parameter Description

[in] functionId FunctionID of the function to be JIT recompiled.

7.32 SetILFunctionBody
The code profiler calls SetILFunctionBody to set the method body of a function in a
module. This will replace the RVA of the method in the metadata to point to this new
method body, and adjust any internal data structures as desired. This function can
only be called on those methods that have never been compiled by a JIT-compiler.

Profiling

Page 57

Use the GetILFunctionBodyAllocator method to allocate space for the new method to
ensure the buffer is compatible.

HRESULT SetILFunctionBody(ModuleID moduleId,

 mdMethodDef method,

 LPCBYTE pbNewILMethodHeader,

 ULONG cbNewMethod)

Parameter Description

[in] moduleId ModuleID of the given module.

[in] method Metadata token for method.

[in] pbNewILMethodHeader Pointer to the new MSIL method header.

[in] cbNewMethod Pointer to the size of the new MSIL method header.

Using ICorProfilerInfo::GetILFunctionBody and ICorProfilerInfo::SetILFunctionBody is
not trivial. Assume that we have the trivial scenario where we simply want to copy
over the body of the original function to a new one. The first thing to ensure is that
we have allocated the memory for the new function body using IMethodMalloc::Alloc.
Next we need to look for variable sized data at the end of the MSIL function body
and make sure that we are copying them properly. An example of a function that has
additional data after the main function body would be the case where we have a try-
catch block. The profiler has to respect the calling convention if a call is going to be
attempted in the injected MSIL code and also make sure that the stack will grow
properly in case there are any operations included.

7.33 SetILInstrumentedCodeMap
The code profiler calls SetILInstrumentedCodeMap to tell the Runtime that the MSIL
map for a function has changed.

In each COR_IL_MAP entry in the map each oldOffset refers to the MSIL offset within
the original unmodified MSIL code. newOffset refers to the corresponding MSIL offset
within the new, instrumented code.

A COR_IL_MAP entry need only be created for each offset in the original code where
instrumentation code has been inserted. Additional intermediate mappings can be
supplied but are unnecessary. Memory for the rgILMapEntries array should be
allocated using the CoTaskMemAlloc() COM API call. The code profiler should not
attempt to free this memory.

Note that currently SetILInstrumentedCodeMap fails to set the map properly for
methods that are pre-compiled. That issue will be addressed in future versions.

HRESULT SetILInstrumentedCodeMap(FunctionID functionId,

 BOOL fStartJit,

 SIZE_T cILMapEntries,

 COR_IL_MAP rgILMapEntries[])

Profiling

Page 58

Parameter Description

[in] functionId FunctionID of the function for which the code map is being
set.

[in] fStartJit A Boolean that should be true to indicate that the invocation
is in advance of JIT compilation of the function. It should be
false if this method is being called to only change the
function’s MSIL map.

[in] cILMapEntries Number of entries in the rgILMapEntries array.

[in] rgILMapEntries An array of entries that specify how the old MSIL offsets
map to the new MSIL offsets.

Profiling

Page 59

8 Memory Allocation Interface (ImethodMalloc)
This is the interface to a very simple allocator that only allows allocating memory.
The user cannot free, the profiling API is freeing the memory for the user
transparently. This interface should be used in conjunction with SetILMethodBody.

8.1 Alloc
A profiler calls Alloc to allocate memory in conjunction with SetILMethodBody.

void Alloc(ULONG cb)

Parameter Description

[in] cb Size of the memory to be allocated.

Profiling

Page 60

9 Profiling Enumerations

9.1 COR_PRF_MONITOR
The following table lists the values that can be set in the pdwRequestedEvents
argument for ICorProfilerCallBack::Initialize. In that way the user can specify which
categories of notifications wishes to receive during execution of the target App. Each
value corresponds to a bit in the DWORD argument. It is possible to OR bits
together to customize the received notifications.

These constants are also used to set the dwEvents argument for
ICorProfilerInfo::SetEventMask; and to interpret the result returned in the
pdwEvents argument from ICorProfilerInfo::GetEventMask.

Note that some of these bits are “immutable” in a sense that the user is allowed to
set them once at Initialize time. It is not allowed to modify them with a call to
SetEventMask (an attempt to do so returns a failure HRESULT) during the program’s
execution.

For brevity, we omit the COR_PRF_MONITOR_ prefix. Some flags are use to enable
or disable a certain functionality in the CLR. For those assume the prefix COR_PRF_.
So, NONE is shorthand for COR_PRF_MONITOR_NONE while ENABLE_JIT_MAPS is a
short for COR_PRF_ENABLE_JIT_MAPS:

Event Category Description

NONE Send no notifications

FUNCTION_UNLOADS Notify each function unload

CLASS_LOADS Notify each class load or unload

MODULE_LOADS Notify each module loaded or unload

ASSEMBLY_LOADS Notify each assembly load or unload

APPDOMAIN_LOADS Notify each AppDomain load or unload

JIT_COMPILATION Notify each function just before being JIT-compiled
and just after JIT-compilation finishing

EXCEPTIONS Notify occurrence of each exception

GC Notify when a garbage collection is about to occur

OBJECT_ALLOCATED Notify each object being allocated on the GC heap

THREADS Notify each thread creation or destruction

REMOTING Notify each context crossing

CODE_TRANSITIONS Notify each transition from managed to unmanaged
code or vice versa

ENTERLEAVE Call function entry hook and exit hook

CCW Notify CCW events (COM-callable-wrapper)

REMOTING_COOKIE Generate cookies so the profiler can pair remoting
callbacks

Profiling

Page 61

callbacks

REMOTING_ASYNC Notify async remoting events

SUSPENDS Notify when CLR gets suspended

CACHE_SEARCHES Send function search notifications for install-time
code generated functions

CLR_EXCEPTIONS Notifies the profiler for CLR exceptions handling

ENABLE_REJIT Send function search notifications for install-time
code generated functions

ENABLE_IN_PROC_DEBUGGING Enables in-process debugging, it is necessary in
order to be able to use the in-process debugging
API

ENABLE_JIT_MAPS Enables JIT-map tracking information

DISABLE_INLINING Disable method inlining (process-wide). If left
enabled, then inlining events are notified via the
JITInlining callback

DISABLE_OPTIMIZATIONS Forces the JIT to disable optimizations

ENABLE_OBJECT_ALLOCATED Allows to track object allocations

ALL All of the above

The following bits are defined as immutable:

IMMUTABLE = COR_PRF_MONITOR_CODE_TRANSITIONS
 |COR_PRF_MONITOR_REMOTING
 |COR_PRF_MONITOR_REMOTING_COOKIE
 |COR_PRF_MONITOR_REMOTING_ASYNC
 |COR_PRF_MONITOR_GC
 |COR_PRF_ENABLE_REJIT
 |COR_PRF_ENABLE_INPROC_DEBUGGING
 |COR_PRF_ENABLE_JIT_MAPS
 |COR_PRF_DISABLE_OPTIMIZATIONS
 |COR_PRF_DISABLE_INLINING
 |COR_PRF_ENABLE_OBJECT_ALLOCATED

Notice that for Object allocations we have two different flags. The first is enabling
object allocations and the second is tracking object allocations. The profiler has to
indicate to the EE that is it going to use object allocations at some point. This
enables the tracking of object allocations and therefore at any point the profiler can
start or stop monitoring objects by calling SetEventMask().

9.2 COR_PRF_MISC
The ICorProfilerInfo::GetFunctionInfo returns the classId of the specified function.
However, it’s not always possible to provide this info. The constants in the following
table are reserved values of ClassId returned in those cases. For brevity, we omit
the PROFILER_ prefix. So, PARENT_UNKNOWN is shorthand for
PROFILER_PARENT_UNKNOWN:

Profiling

Page 62

Enumeration Description

PARENT_UNKNOWN Owner class unknown

GLOBAL_CLASS Function is global (within its defining module)

GLOBAL_MODULE This is used to cover the case where we have a global method
that does not belong to any class or module

9.3 COR_PRF_JIT_CACHE
The following table lists values supplied in the functionId argument of the
ICorProfilerCallback::JITCachedFunctionSearchFinished callback. In the following
table, for brevity, we omit the COR_PRF_JIT_CACHE_ prefix. So, FUNCTION_FOUND
is shorthand for COR_PRF_JIT_CACHE_FUNCTION_FOUND:

Enumeration Description

FUNCTION_FOUND Found a instance of the function (whose
FunctionID was notified in the immediately-
preceding JITCachedFunctionSearchStarted
callback) in the JIT cache

FUNCTION_NOT_FOUND Said function not found in JIT cache

9.4 COR_PRF_SUSPEND_REASON
The following table lists the values supplied in the
ICorProfilerCallback::RuntimeSuspendStarted notification. For brevity, we omit the
COR_PRF_SUSPEND_ prefix. So, OTHER is shorthand for
COR_PRF_SUSPEND_OTHER:

Enumeration Description

OTHER Reason other than those below

FOR_GC For a garbage collection. Any GC-related
callbacks will occur before the following
RuntimeResumeStarted event

FOR_APPDOMAIN_SHUTDOWN To shut down an AppDomain

FOR_CODE_PITCHING For code pitching (not implemented in V1)

FOR_SHUTDOWN For shutdown of the CLR itself

FOR_INPROC_DEBUGGER For in-process debugging operations

FOR_GC_PREP For GC preparation

9.5 COR_PRF_TRANSITION_REASON
The following table lists the values supplied in the reason parameter for the two
notifications: UnmanagedToManagedTransition and ManagedToUnmanagedTransition

Profiling

Page 63

(in the ICorProfilerCallback API). For brevity, we omit the
COR_PRF_TRANSITION_REASON_ prefix. So, CALL is shorthand for
COR_PRF_TRANSITION_CALL:

Constant Description

CALL Transition was a call (into managed if
UnmanagedToManagedTransition; into unmanaged if
ManagedToUnmanagedTransition)

RETURN Transition was a return of control from the previous, matching
transition

9.6 CorDebugIlToNativeMappingTypes
This enumerator contains values that could be returned from GetILtoNativeMap
method for certain areas of the code that the native instructions correspond to
special regions of the code.

Constant Description

NO_MAPPING Indicates that we cannot map this area properly, this value is
returned when we have optimizations enabled or when the profiler
has not requested from the JIT to track MSIL maps

PROLOG Indicates that we are in the prolog

EPILOG Indicates that we are in the epilog

9.7 COR_PRF_JIT_MAP
The COR_PRF_JIT_MAP notifies a profiler about the result of a search for a cached
function.

typedef enum

{

 COR_PRF_CACHCED_FUNCTION_FOUND,
 COR_PRF_CACHCED_FUNCTION_NOT_FOUND
} COR_PRF_JIT_CACHE;

Member Description

COR_PRF_CACHED_FUNCTION_FOUND The search for the cached function
was successful.

COR_PRF_CACHED_FUNCTION_NOT_FOUND The search for the cached function
was unsuccessful.

Profiling

Page 64

10 Profiling Type Definitions

10.1 COR_IL_MAP
The COR_IL_MjAP type is used to describe how an MSIL offset in an old function
body maps to the MSIL offset in the new function body that replaces the old function
body. See the ICorProfilerInfo::SetILInstrumentedCodeMap for a description of how
this type is used.

typedef struct _COR_IL_MAP
{
 SIZE_T oldOffset;
 SIZE_T newOffset;
 BOOL fAccurate
} COR_IL_MAP;

Member Description

oldOffset MSIL offset in the old function body.

newOffset MSIL offset in the new function body.

fAccurate Shows if the mapping is accurate

10.2 COR_DEBUG_IL_TO_NATIVE_MAP
This structure contains information for every MSIL offset, what is the start and end
offset of the native code that it maps to.

typedef struct COR_DEBUG_IL_TO_NATIVE_MAP
{
 ULONG32 ilOffset;
 ULONG32 nativeStartOffset;
 ULONG32 nativeEndOffset;
} COR_DEBUG_IL_TO_NATIVE_MAP;

Member Description

ilOffset MSIL offset that is going to be mapped

nativeStartOffset Native offset where the mapping of the ilOffset starts.

nativeEndOffset Native offset where the mapping of the ilOffset ends.

Notice that nativeStartOffset and nativeEndOffset can have values defined in
CorDebugIltoNativeMappingTypes if the MSIL instruction corresponds to the prolog or
the epilog or the JIT’s mapping information is not enabled.

Profiling

Page 65

10.3 FunctionIDMapper
The FunctionIDMapper type definition is used by the
ICorProfilerInfo::SetFunctionIDMapper method to specify a function that will be
called to map FunctionIDs to alternative values that will be passed to the function
entry and function exit callbacks supplied to the
ICorProfilerInfo::SetEnterLeaveFunctionHooks method. The mapper can be set only
once and it is recommended to do so in the Initialize callback.

typedef void __stdcall FunctionIDMapper(FunctionID functionId,

 BOOL *pbHookFunction)

Parameter Description

FunctionId FunctionID of the function for which the mapping is requested.

pbHookFunction Pointer to a function that is called to provide the alternative value
to be passed to the function entry and function exit callbacks.

10.4 FunctionEnter
The FunctionEnter type definition describes the signature of the function entry
callback supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

typedef void __stdcall FunctionEnter(FunctionID functioned)

Parameter Description

functionId FunctionID of the function that was entered.

10.5 FunctionExit
The FunctionExit type definition describes the signature of the function exit callback
supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

typedef void __stdcall FunctionExit(FunctionID functionId)

Parameter Description

functionId FunctionID of the function that was exited.

10.6 FunctionTailcall
The FunctionTailcall type definition describes the signature of the function tail call
callback supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

typedef void __stdcall FunctionTailcall(FunctionID functioned)

Profiling

Page 66

Parameter Description

functionId FunctionID of the function that was exited with a tail call.

For more details on how to use and implement the above callbacks, please refer to
the Profiler Sample that is included in the “Tool Developers Guide\Samples”
directory.

Profiling

Page 67

11 Security Issues in Profiling
The CLR Profiling Services security is based on the security that is applied to the user
that instantiates profiling by the operating system. The CLR security for the
execution of unmanaged code is minimal and therefore administrators should be
careful when granting execution rights to users.

Consider for example a couple of scenarios. The Runtime Profiling Services are
available in-process to a code profiler. The Profiling Services allow a code profiler to
instrument code dynamically. In dynamic code instrumentation, the code profiler
calls Profiling Services methods to replace methods in the profiled process with
methods supplied by the code profiler. The new methods could be managed and/or
unmanaged. These modifications violate the enforcement of security imposed on the
code in various ways that cannot be controlled by the Runtime. This is because the
CLR does not provide a complex set of security checks for native code. The security
that is applied to the profiler is basically the same as the security that is applied to
the user that instantiates profiling by the operation system. Therefore, if users have
enough execution privileges they can instantiate a profiler and get full trust by the
CLR.

Profiling

Page 68

12 Combining Managed and Unmanaged Code in a

Code Profiler
A close review of the available CLR Profiling API’s creates the impression that
someone could write a profiler that can have managed and unmanaged components
that call to each other through COM Interop or ndirect calls.

Although this is possible from a design perspective, the CLR Profiling API does not
support it. A CLR profiler is supposed to be purely unmanaged. Attempts to combine
managed and unmanaged code from a CLR profiler can cause crashes, hangs and
deadlocks. The danger is clear since the managed parts of the profiler will “fire”
events back to its unmanaged component, which subsequently would call into the
managed part of the profiler etc. The danger at this point is clear.

The only location that a CLR profiler could invoke managed code safely would be
through replacement of the MSIL body of a method. The profiler before the JIT-
compilation of a function is completed inserts managed calls in the MSIL body of a
method and then lets the JIT compile it. This technique can successfully be used for
selective instrumentation of managed code, or it can be used to gather statistics and
times about the JIT.

Alternatively a code profiler could insert native “hooks” in the MSIL body of every
managed function that call into unmanaged code. That technique could be used for
instrumentation and coverage. For example a code profiler could be inserting
instrumentation hooks after every MSIL block to ensure that the block has been
executed. The modification of the MSIL body of a method is very delicate operation
and there are many factors that should be taken into consideration.

Profiling

Page 69

13 Profiling an application with precompiled

components

In order to improve the performance of the CLR, it is possible for an application to
consist of precompiled components. If a module is likely to be used very frequently
by one or more applications it is recommended to pre-compile that module for
improved speed. For example notice that mscorlib.dll that contains the .net
framework class library for the .net framework is being precompiled during the
installation of the .NET SDK. The existence of precompiled modules creates a new
picture for the CLR profiling services.

A profiler has to be able to monitor which functions get compiled in the traditional
way and which functions are used in their precompiled form. This can be achieved by
monitoring:

JITCompilationStarted, JITCompilationFinished, JITCachedFunctionSearchStarted,
JITCachedFunctionSearchFinished

Additionally, the enter-leave and interop events should behave in a consistent way in
light of precompiled modules for both precompiled and normally compiled methods.
To achieve that the precompiled image MUST contain profiling information, otherwise
the CLR loader will not use the existing pre-compiled images and it will default to the
regular JIT.

The tool that is used to produce precompiled images is called ngen.exe and it is
available in the .NET Framework SDK. To successfully profile a precompiled .NET
component, you will need to use ngen.exe with the appropriate settings as shown in
the table below:

CLR Profiler Parameters to use while pre-compiling a module

Monitors enter-leaves and/or
transitions

ngen /prof <modules you wish to precompile>

Does not monitor enter-
leaves nor transitions

ngen <modules you wish to precompile>

Note that using the in-process Debugging API with pre-compiled images that contain
profiling information is not supported currently.

Profiling

Page 70

14 Profiling Unmanaged Code
There is minimal support in the Runtime profiling interfaces for profiling unmanaged
code. The following functionality is provided:

• Enumeration of stack chains. This allows a code profiler to determine the
boundary between managed code and unmanaged code.

• Determine if a stack chain corresponds to managed or native code.

These methods are available through the in-process subset of the CLR debugging
APIs. These are defined in the CorDebug.IDL and explained in DebugRef.doc, please
refer to both for more details.

